
Tudor: a versatile family of histone
methylation ‘readers’
Rui Lu1,2 and Gang Greg Wang1,2,3

1 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC

27599, USA
2 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599,

USA
3 Biological and Biomedical Sciences Program and Curriculum in Genetics and Molecular Biology, University of North Carolina at

Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA

Review
The Tudor domain comprises a family of motifs that
mediate protein–protein interactions required for vari-
ous DNA-templated biological processes. Emerging evi-
dence demonstrates a versatility of the Tudor family
domains by identifying their specific interactions to a
wide variety of histone methylation marks. Here, we
discuss novel functions of a number of Tudor-containing
proteins [including Jumonji domain–containing 2A
(JMJD2A), p53-binding protein 1 (53BP1), SAGA-associ-
ated factor 29 (SGF29), Spindlin1, ubiquitin-like with
PHD and RING finger domains 1 (UHRF1), PHD finger
protein 1 (PHF1), PHD finger protein 19 (PHF19), and
SAWADEE homeodomain homolog 1 (SHH1)] in ‘read-
ing’ unique methylation events on histones in order to
facilitate DNA damage repair or regulate transcription.
This review covers our recent understanding of the
molecular bases for histone–Tudor interactions and their
biological outcomes. As deregulation of Tudor-contain-
ing proteins is associated with certain human disorders,
pharmacological targeting of Tudor interactions could
provide new avenues for therapeutic intervention.

Histone modification and its ‘reader’ proteins in gene
regulation
In eukaryotic cells, DNA is packaged with core histones
H2A, H2B, H3, and H4 to form the basic building unit of
chromatin – nucleosomes. These histones possess many
sites for post-translational modification (PTM) such as
methylation, acetylation, ubiquitination, and phosphory-
lation, which constitute a hypothetical ‘histone code’ for
chromatin organization and gene regulation [1]. It has
been postulated that functional interpretation of histone
PTMs is executed at least in part by so-called histone
reader proteins, which use structurally conserved domains
to recognize and engage histone PTMs in a sequence- and
modification-specific fashion. Reader-mediated chromatin
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interaction helps recruit and/or stabilize the associated
multiprotein complexes to specific loci to alter chromatin
structure and regulate DNA-dependent processes in vari-
ous biological contexts [2–4]. Deregulation in interpreta-
tion of histone PTMs has been causally linked to the
development of various human diseases including cancer
[5–7], immune dysfunction [8,9], and neurological disor-
ders [8,10]. Therefore, dissecting the biochemical basis for
histone–reader interactions could promote a deeper under-
standing of the fundamental mechanism that underlies
gene regulation and pathogenesis.

Several protein domain families have been identified that
specifically recognize histone PTMs. For example, bromo-
domains bind histone lysine acetylation in a promiscuous
manner [2,4,11]; 14-3-3 and BRCT (BRCA1 C terminus)
domains bind to histone serine or threonine phosphoryla-
tion [2,4]; and different subsets of plant homeodomain
(PHD) finger motifs are able to recognize different degrees
of methylation status at histones H3 lysine 4 [2,4,12–17].
Furthermore, a large family of so-called Royal family
domains including Tudor, chromo, MBT (malignant brain
tumor), and PWWP (pro-trp-trp-pro) domains have been
shown to interact with methylated histone tails [2,4]. In
this review, we focus on recent studies that reveal the
multifaceted capacities of various Tudor domains in reading
different histone methylation marks on chromatin, and
discuss how these Tudor-containing readers and associated
protein complexes further direct chromatin state-dependent
regulation of gene transcription and DNA damage repair.

Tudor domain as readers of histone PTMs
The Tudor domain was named after the Drosophila tudor
(tud) gene identified in a screen for maternal-effect reces-
sive lethality or sterility [18]. Drosophila tud contains 11
repeats of a conserved motif, subsequently termed Tudor,
which appears in many proteins throughout various spe-
cies [19,20]. The Tudor domain typically contains �60
amino acids that comprise 4–5 antiparallel b-strands to
form a barrel-like structure. Several Tudor-containing
proteins were found to interact with methylated arginine
residues in non-histone proteins involved in the regulation
of RNA metabolism, alternative splicing, small RNA path-
ways, or germ cell development [21,22], whereas other
Tudor domains were shown to form a chromodomain-like
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Table 1. Mammalian Tudor-domain-containing proteins as histone methylation readers, and their biological functions

Protein Domain architecture Tudor ligand Kd (mM) Biological functions Refs

JMJD2A

  JmjN  JmjC  PHD  PHD  Tudor Tudor 

100 aa H3K4me3 �0.5 H3K9me3 and

H3K36me3-specific

demethylase;

transcriptional

regulation and

regulator of DNA

damage response

[28,45,48]

H4K20me3 �0.4

H4K20me2 �2

53BP1

Tudor  Tudor             BRCT              BRCT

H4K20me2 20�50 Substrate of ATM;

promote non-

homologous end

joining DNA repair

[29,44]

SGF29

Tudor   Tudor

H3K4me3 1�4 Component of SAGA

complex; mediate

transcriptional

activation

[30,31]

Spindlin1

Tudor  Tudor  Tudor

H3K4me3 �0.8 Nucleolar protein;

promote rRNA

transcription

[32,33]

UHRF1

UBL           Tudor  Tudor   PHD             SRA                            RING

H3K9me3

by Tudor

1�3 Partner of DNMT1;

maintain the level of

DNA methylation

during DNA

replication

[35,37,66,

88,89]

H3 N terminus

and K9me3 by

Tudor–PHD

�0.4

PHF1

Tudor  PHD     PHD

H3K36me3 5–50a Accessory

component of PRC2

complex; promote

transcriptional

repression

[38,39,40]

PHF19

Tudor  PHD    PHD

H3K36me3 6–35a Accessory

component of PRC2

complex; promote

transcriptional

repression

[38,40,41,42]

LBR

 Tudor                       Transmembrane regions

H4K20me2 N.D. Inner nuclear

membrane protein;

promote formation

of nuclear peripheral

heterochromatin

[84]

TDRD3

UBA          Tudor

H4R3me2a;

H3R17me2a;

H3R2me2a

>500 Transcriptional

coactivator and

interacts with

CARM1 and PRMT1

[105,109]

Abbreviations: ATM, ataxia telangiectasia mutated; Kd, dissociation constant; N.D., not defined; PRC2, polycomb repressive complex 2.

Modifications: me1, monomethylation; me2, dimethylation; me3, trimethylation; me2a, asymmetric dimethylation.

Protein domains: BRCT, BRCA1 C terminus domain; JmjC, jumonji C domain; JmjN, jumonji N domain; PHD, plant homeodomain; RING, really interesting new gene finger

domain; SRA, SET and RING finger associated domain; UBA, ubiquitin-associated domain; UBL, ubiquitin-like domain.

a, for PHF1 or PHF19 binding to H3K36me3 peptides, a Kd of 5–6 mM was obtained at 4 8C in a buffer of 100 mM NaCl and 20 mM Tris–HCl pH 7.5, and a higher Kd of 35–50 mM

obtained at 258 in a buffer of 150 mM NaCl and 20 mM Tris, pH 6.8–7.5.
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cage [23] at their surfaces to accommodate a methylated
lysine [24–26]. Among the �30 mammalian Tudor-contain-
ing proteins, 53BP1 and JMJD2A were the first ones that
were shown to harbor histone methylation-binding capaci-
ties via Tudor [27–29]. Recent studies have identified novel
functions of several other Tudor-containing proteins in-
cluding SGF29 [30,31], Spindlin1 [32,33], UHRF1 [34–37],
PCL family proteins (PHF1 [38–40] and PHF19 [38,40–
42]), and SHH1 [43], in reading a variety of different
histone methylations (summarized in Table 1). In addition,
recent works also demonstrated that JMJD2A and 53BP1
binding to dimethylated histone H4 lysine 20 (H4K20me2)
is critical for regulation of cellular response to DNA dam-
age [44,45]. In the following sections, we discuss our cur-
rent understanding of the molecular basis and biological
function of these new Tudor–histone interactions.
Hybrid tandem-Tudor domain as a histone PTM reader
JMJD2A, JMJD2B, and JMJD2C, three members of the
JMJD2 family of proteins, all contain a JmjN–JmjC do-
main that specifically removes tri-/dimethylation marks on
histone H3 Lys9 and Ly36 (H3K9me3/2 and H3K36me3/2),
two PHD fingers, and two Tudor domains in tandem
(termed tandem-Tudor) near their C termini (Table 1)
[46]. Although the tandem-Tudor domain is not essential
for demethylating activities [47], it harbors binding activi-
ties towards trimethylation of histone H3 Lys4 and histone
H4 Lys20 (H3K4me3 and H4K20me3), indicating a chro-
matin-targeting mechanism for these enzymes [28,48].

Structurally, the two Tudor domains in the JMJD2A
tandem-Tudor interdigitate with two shared b-strands to
form a bilobal, saddle-shaped structure, with each hybrid
lobe resembling a canonical Tudor fold (Figure 1A) [28].
The second lobe uses a cluster of aromatic residues, F932,
547
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Figure 1. Structure of Tudor domains bound to their histone lysine methylation ligands. Panels shown are the structure for a tandem-Tudor domain of Jumonji domain-

containing 2A (JMJD2A) in complex with H3K4me3 (panel A, left) or H4K20me3 (panel A, right); a tandem-Tudor domain of p53-binding protein 1 (53BP1) in complex with

H4K20me2 (panel B); that of SAGA-associated factor 29 (SGF29) (panel C) and Spindlin1 (panel D) in complex with H3K4me3; the linked Tudor–PHD (plant homeodomain) modules

of ubiquitin-like with PHD and RING finger domains 1 (UHRF1) in complex with H3K9me3 and the unmodified N terminus of histone H3 (panel E); a single Tudor motif of PHD

finger protein 1 (PHF1) (panel F) or PHD finger protein 19 (PHF19) (panel G) in complex with H3K36me3; and a cryptic, tandem Tudor-like module of SAWADEE homeodomain

homolog (SHH1) in complex with H3K9me3 and the unmodified H3K4 (panel H). The Tudor sequences and histone peptides are colored in green and yellow, respectively.

Identification of each of the aromatic residues involved in the formation of histone methylation-binding cage or pocket are labeled with their side chains colored in purple. The

Protein Data Bank (PDB) accession numbers for structures presented in panels A to H are 2GFA, 2QQS, 2LVM, 3ME9, 4H75, 3ASK, 4HCZ, 4BD3, and 4IUT, respectively.
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W967 and Y973 to establish an open ‘cage’-like structure
for binding the side chain of H3K4me3 or H4K20me3
(Figure 1A, left and right panels) [28]. The two complexes
share high similarity in the overall hybrid lobe structure,
the aromatic cage, and the binding affinities (Table 1). The
H3 and H4 peptides, however, contact the Tudor domains
in opposite orientations and at different surfaces of the
second hybrid Tudor domain (Figure 1A, left versus right)
[48].

The JMJD2A tandem-Tudor domain also binds in rela-
tively high affinity to H4K20 dimethylation (H4K20me2)
(Table 1), a histone PTM known to mark the site of DNA
548
damage and to recruit a critical DNA repair factor 53BP1
(which also uses a tandem-Tudor domain to bind
H4K20me2; see next section) [45]. A recent study showed
that JMJD2A and JMJD2B proteins engage H4K20me2
and ‘mask’ the accessibility of this histone PTM to 53BP1
in nondamaged cells (Figure 2A) [45]. Upon DNA damage,
the E3 ubiquitin ligases Ring Finger Protein 8 and 168
(RNF8 and RNF168) degrade JMJD2 via an ubiquitina-
tion-dependent mechanism, thus allowing exposure of
H4K20me2 and induction of 53BP1-mediated loci formation
(Figure 2A) [45]. This highlights an elegant mechanism to
expose specifically H4K20me2 at DNA damage sites where



H2B H4 

H3 H2A 

Tudor
53BP1 

Histone H4

Me 

K20

ATM 
NHEJ repair of DSB 

Ac 

K16

Tip60 

HR of DSB 

DNA
damage  

SGF29 

Histone H3

GCN5 

Ac

K9

Transcrip�onal ac�va�on 

K14

GCN

SAGA 

H4 H3 

H2A H2B 

K4

DNMT1 

K9

DNA methyla�on

Histone H3

A1R2T3K4

PHD Tudor SRA 

Me

UHRF1 

H4 H3 

H2A  H2B 

Hemi-methylated 
DNA

Spindlin1

Histone H3

  Pol I 

Facilitates rRNA gene expression 

H4 H3 

H2A H2B 

Ac�ve rDNA loci

Tudor
JMJD2A

Histone H4

Me

K20

H2B H4 

H3 H2A 

53BP1
Tudor

Prevents 53BP1 foci forma�on
DNA
damage 

JMJD2A Ub 

RNF8

RNF168

Degrada�on
A�er degrada�on

of JMJD2A 

EED SUZ12 

EZH2

Me 

K27
K36

Transcrip�onal repression

Histone H3

EED

EPRC2 

Tudor
PHF1/19 

H4 H3 

H2A H2B 

(A)

(C)

(E) (F)

(D)

(B)

Me A1R2

Tudor

Ac Ac

K18

A1R2 R8
Me

Tudor

K4

Me

TiBS 

Figure 2. Functional read-out of histone methylation by Tudor-containing proteins and their associated complexes. (A) Jumonji domain-containing 2A (JMJD2A) Tudor

domain (in red) binds to H4K20me2 in undamaged cells and prevents the damage-associated formation of p53-binding protein 1 (53BP1) loci. Upon DNA damage, E3

ubiquitin ligases Ring Finger Protein 8 and 168 (RNF8 and RNF168) promote JMJD2A ubiquitination and degradation at sites of DNA damage, which allow 53BP1 to bind to

H4K20me2 and form loci at the damaged sites. (B) During cellular response to DNA damage, recognition of H4K20me2 by the 53BP1 Tudor (in red) helps to recruit 53BP1

efficiently to sites of DNA double-strand breaks (DSBs), where 53BP1 promotes the nonhomologous end joining (NHEJ) repair pathway. TIP60-mediated H4K16 acetylation

inhibits 53BP1 interaction to H4K20me2, blocks 53BP1 recruitment, and promotes breast cancer 1 (BRCA1)-mediated homologous repair (HR) pathway. (C) Reading

H3K4me3 and the N terminus of H3 (exampled by A1R2) by the SAGA-associated factor 29 (SGF29) Tudor (in red) is critical for recruitment of general control nonrepressed

protein 5 (GCN5) and other SAGA (Spt–Ada–Gcn5 acetyltransferase) complex components to target gene promoters where GCN5–SAGA promotes histone acetylation and

gene transcription. (D) The nucleolar protein Spindlin1 utilizes a Tudor domain (in red) to recognize H3K4me3 and the surrounding H3 residues (exemplified by H3R2 and

H3R8), which facilitates its recruitment to active rDNA genes and its promotion of rRNA expression. (E) Multivalent engagement of the unmodified N terminus of histone H3

(shown as A1R2T3K4), H3K9me3, and the hemimethylated DNA by the linked UHRF1 PHD finger (in green), Tudor (in red), and SET- and RING-associated (SRA; in pink)

motifs, respectively, helps to recruit UHRF1 and associated DNA methyltransferase 1 (DNMT1) to heterochromatin. DNMT1 subsequently methylates the newly synthesized

DNA and maintains a normal cellular level of DNA methylation. (F) Binding to H3K36me3 by the PHD finger protein 1 (PHF1) or PHD finger protein 19 (PHF19) Tudor (in red)

provides a novel mechanism for recruiting Polycomb Repressive Complex 2 (PRC2) to a subset of actively transcribed genes, which results in optimal H3K27me3 and

repression of gene transcription. All Tudor-containing proteins are colored in light green. Abbreviations: Ac, acetylation; Me, methylation; Ph, phosphorylation.
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53BP1 is recruited. Taken together, binding to histone
methylation by the JMJD2A Tudor controls DNA-dam-
age-induced cellular response by antagonizing 53BP1.

Independent tandem-Tudor domain as a histone PTM
reader
53BP1 Tudor – a reader of methylated H4K20

The mammalian 53BP1 and its yeast homolog cut5-repeat
binding 2 (Crb2) are evolutionarily conserved checkpoint
proteins involved in DNA damage response. Ataxia
telangiectasia mutated (ATM) family kinases phosphory-
late 53BP1/Crb2 upon insults such as DNA double-strand
breaks (DSBs). 53BP1/Crb2 subsequently relocalizes to
DSB sites and promotes formation of the ionizing-radia-
tion-induced foci, an assembly of numerous DNA repair
and checkpoint proteins [49]. The tandem Tudor domain of
53BP1 has been shown to bind damage-induced dimethy-
lation of p53 and facilitate p53 accumulation during DNA
repair [50,51]. Radiation sensitivity and elevated tumor
risk in 53BP1-deficient mice lend credence to the role of
549
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this protein in DNA damage response [52]. Recruitment of
53BP1 occurs, in part, through its association with meth-
ylated H4K20 (H4K20me) at DSB sites (Figure 2B)
[27,29,53], a process negatively controlled by JMJD2A
(Figure 2A). 53BP1 promotes the non-homologous end-
joining (NHEJ) repair pathway, whereas BRCA1 antago-
nizes 53BP1 to promote homologous recombination (HR)
[54–56]. Biochemical and structural analysis indicate that
a conserved tandem-Tudor domain of 53BP1 (Table 1) and
Crb2 preferentially interacts with H4K20me2, although it
also binds to H4K20me1 [29]. The 53BP1 tandem-Tudor
domain forms two independently folded structures, which
is different from the JMJD2A hybrid-tandem Tudor do-
main described above, despite their sequence similarity.
The H4K20me2-binding cage comprises four aromatic resi-
dues, W1495, Y1502, F1519, and W1523, and an aspartic
residue D1521, all of which reside in the first Tudor domain
(Figure 1B). These aromatic residues interact with the
dimethyllysine ammonium group of H4K20me2 through
van der Waals and cation-p interactions, whereas a direct
hydrogen bond formed between the amino proton of
H4K20me2 and the carboxylate group of D1521 dictates
selectivity for di- or monomethylation over trimethylation
[29]. Mutation of these critical residues impairs binding to
H4K20me2 and also compromises efficient 53BP1 target-
ing to DSB [29], which is in agreement with the genetic
interaction between Crb2 and the H4K20 site observed in
yeast [27,53,57].

The 53BP1 Tudor motif also forms extensive contacts
with histone residues adjacent to H4K20me2 such as
H4K16 [44] and H4H18 [29]. It is believed that association
with adjacent histone sequences contributes to binding
specificity, selectivity, and/or affinity, which is a common
theme for almost all of the structurally defined histone
methylation readers, including Tudor. Indeed, a recent
study showed that recognition of H4K20me2 by 53BP1
was inhibited by Tat-interacting protein 60 kDa (TIP60)-
mediated acetylation of H4K16 (Figure 2B) [44]. Essential-
ly, H4K16 acetylation disrupted a critical salt bridge
formed between H4K16 and an acidic residue (E1551) of
53BP1 Tudor, and therefore destabilized 53BP1 binding to
H4K20me2 [44]. As a result, 53BP1-mediated NHEJ was
inhibited, and BRCA1-mediated HR took over for repair
(Figure 2B). Taken together, these studies demonstrate a
direct role of 53BP1-mediated ‘read-out’ of H4K20me2 for
promoting DNA repair, and the histone PTM contexts at
sites of DSBs provide an elaborate regulatory mechanism
for controlling 53BP1 association and dissociation, which
fine-tunes the decision-making among different options
available for repair.

SGF29 Tudor – a reader of H3K4me3/2

SAGA (Spt–Ada–Gcn5 acetyltransferase) is an evolution-
arily conserved multiprotein complex that facilitates gene
transcription by mediating histone acetylation and deubi-
quitination [58]. Among SAGA subunits, SGF29 is the only
one that contains a tandem-Tudor domain that is con-
served across species from yeast to humans [30]. The
SGF29 tandem-Tudor domain (Table 1) has recently been
identified as an H3K4me3/2-specific reader by mass-spec-
trometry-based screening [31]. H3K4me3 is its preferred
550
ligand, with a Kd of 1–4 mM [30,31], which is consistent
with chromatin immunoprecipitation (ChIP)-sequencing
studies showing that SGF29 localizes to gene promoters
and largely overlaps with H3K4me3 [31]. Structural anal-
yses further demonstrate the SGF29 tandem-Tudor
domains form independently but pack tightly against each
other with interactions between the first two b-strands of
each motif (Figure 1C) [30]. When bound by SGF29,
H3K4me3 is anchored in a negatively charged ‘pocket’ that
consists of three conserved aromatic residues, Y238, F264,
and Y265, and an acid residue D266, at the surface of the
second Tudor domain (Figure 1C). Multiple interactions
including cation-p, van der Waals, and hydrophobic inter-
actions, as well as a salt bridge between H3K4me3 and the
aromatic pocket, establish the intermolecular binding [30].
Similar to H3K4me3/2-engaging PHD fingers [2,8,15], the
SGF29 Tudor domain also interacts with the N terminus of
H3, including residues A1 and R2, which contributes to
binding specificity towards H3K4me3 [30]. Knockdown of
SGF29 or introduction of point mutations at its aromatic
pocket abolishes interaction between H3K4me3 and SAGA
complexes, leading to loss of SAGA binding at target
promoters and decreased acetylation of H3K9, H3K14,
and H3K18 [30,31]. Taken together, these observations
demonstrate a critical role for the SGF29 tandem-Tudor
domain in linking SAGA complexes to H3K4me3/2-marked
promoters to mediate transcriptional regulation through
subsequent chromatin modifications (Figure 2C).

Spindlin1 Tudor – a reader of H3K4me3

The nucleolar protein Spindlin1 contains three Tudor-like
domains in tandem as revealed by its crystal structure [59].
Initially, Spindlin1 was identified as an H3K4me3-inter-
acting factor in a proteomics screen using protein affinity
purification with premethylated nucleosomes [60]. A later
measurement of Spindlin1 interaction with H3K4me3 in-
deed revealed a high affinity, with a Kd of 0.3–0.8 mM
(Table 1) [32,33]. Structural analyses show the second
Tudor domain is the sole contributor to H3K4me3 associa-
tion, with a binding cage consisting of four aromatic resi-
dues F141, W151, Y170, and Y177 that tap the H3K4-
trimethylated side chain (Figure 1D) [32]. Other histone
residues, including H3A1, H3R2, and H3R8, form hydro-
gen bonds with several negatively charged residues from
the second Tudor domain [32]. These studies also show
that all these interactions confer a tight binding of Spin-
dlin1 to the H3K4me3-marked promoters among the rDNA
gene repeats in the nucleolus, where Spindlin1 facilitates
rRNA transcription (Figure 2D) [32,33]. However, the
mechanism by which Spindlin1 stimulates the rRNA gene
expression is currently unknown.

UHRF1 Tudor – a reader of H3K9me3

UHRF1 contributes to the maintenance of DNA methyla-
tion by recruiting DNA methyltransferase 1 (DNMT1) to
replication forks [61,62]. UHRF1 contains multiple con-
served protein motifs, including an ubiquitin-like domain
(UBL) at the N terminus, followed by a tandem-Tudor
domain, a PHD finger, a SET- and RING-associated
(SRA) domain, and a RING domain at the C terminus
(Table 1). Previously, it was demonstrated that the UHRF1
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SRA domain specifically recognizes replication-induced,
hemimethylated CpG dinucleotides (Figure 2E), providing
a mechanism for targeting DNMT1 to the newly synthe-
sized DNA fibers in order to restore the cellular level of
DNA methylation [63–65].

Several recent studies further revealed an equally criti-
cal role of the UHRF1 tandem-Tudor domain for mainte-
nance of DNA methylation [34,36,37,66,67]. These studies
show the UHRF1 tandem-Tudor domain binds to
H3K9me3 with high affinity (Table 1). Indeed, such bind-
ing is required for UHRF1-mediated recruitment of
DNMT1 to heterochromatic regions to promote DNA meth-
ylation (Figure 2E) [35,66,67]. The crystal structure of
UHRF1 tandem-Tudor domain plus PHD finger in associ-
ation with H3K9me3-containing histone H3 peptides was
resolved [35]. Similar to SGF29, the two UHRF1 Tudor
domains in tandem also pack tightly against each other
using their first two b-strands, whereas the first Tudor
accommodates the H3K9me3 side chain using an aromatic
cage formed by F152, Y188, and Y191 (Figure 1E) [35].
Genetic complementation assays performed among Uhrf1-
null embryonic stem (ES) or UHRF1-knockdown cells
demonstrate that the UHRF1 mutants, deficient in binding
to either H3K9me3 or hemimethylated CpG, only exhibit a
partial or subtle defect in their association with hetero-
chromatin and in their abilities to maintain DNA methyl-
ation, whereas those with deficiencies in both show a much
more dramatic defect with a complete failure in rescuing
loss of DNA methylation [34,36]. Together, these studies
demonstrate a multilayered, compensatory mechanism
provided by various structural modules of UHRF1 in order
to enforce an efficient chromatin targeting, and to maintain
the fidelity and level of DNA methylation (Figure 2E; also
see section on ‘multivalent readout of histone PTMs’ below
for further discussion of the linked Tudor and PHD mod-
ules of UHRF1).

Single Tudor domain as a histone PTM reader
PHF1 and PHF19 Tudor – readers of H3K36me3/2

The polycomb-like (PCL) protein family acts as an acces-
sory component of PRC2 (Polycomb Repressive Complex-
2), the complex that catalyzes trimethylation of histone H3
Lys27 (H3K27me3) to repress gene expression [68,69].
Three mammalian PCL members, PHF1 (also known as
PCL1), MTF2 (also known as PCL2), and PHF19 (also
known as PCL3), all contain a single Tudor motif, two
PHD fingers (Table 1), and a C-terminal chromo-like do-
main [42]. In vitro studies suggest that PCL proteins
modulate PRC2 enzymatic activities and appear to help
recruit PRC2 to a subset of target genes important for
development and differentiation [70–76]. Recently, a flurry
of reports further demonstrated that the Tudor domain of
PHF1 and PHF19 specifically reads H3K36me3/2; a his-
tone PTM that marks the gene body of actively transcribed
genes [38,39,41,42]. Binding to H3K36me3 by the PHF1/
PHF19 Tudor (Table 1) [38–40,42] is much tighter than
that by the previously reported H3K36me3 readers such as
the chromodomain of Esa1p-associated factor-3 (Eaf3)
[77,78] and PWWP domains [79,80]. Structural analyses
of the PHF1 and PHF19 Tudors reveal two highly similar
b-barrel structures (Figure 1F,G) with each comprising five
antiparallel b-strands [38,39,42]. The trimethylammo-
nium side chain of H3K36me3 fits into an aromatic cage
at one end of the b-barrel (Figure 1F,G) [38,39]; the histone
H3 residues T32 to R40 make additional contacts to Tudor,
which include a salt bridge formed between H3K37 and an
acidic residue of Tudor (E66 of PHF1 or E75 of PHF19)
[38,39,42]. Biochemically, extensive direct interactions be-
tween PHF1/PHF19 Tudors and the histone sequences
surrounding H3K36me3 contribute to their binding speci-
ficity and affinity.

Using overexpression and knockdown of PHF1/PHF19,
these recent studies collectively showed that reading of
H3K36me3/2 by PHF1/PHF19 Tudors mediates targeting
and/or spreading of PRC2 complexes to many tested
H3K36me3-containing loci among HeLa or pluripotent
stem cells (Figure 2F) [38,41,42]. Mutations at the cage
residues of PHF1/PHF19 Tudors abolished the
H3K36me3/2 binding and prevented PRC2-mediated re-
pression of certain development genes such as Hox and Fgf
[38,41,42]. Furthermore, PHF19 or the PRC2 complex was
found to be associated with an H3K36me3 demethylase
NO66 [41] or coexisting with an H3K36me2 demethylase
KDM2B [42,81] at a subset of PRC2 target genes, promot-
ing a simultaneous H3K36 demethylation and H3K27
methylation in order to complete conversion from a state
of active gene transcription to de novo silencing. Interest-
ingly, a recent mass-spectrometry-based study identified a
form of asymmetrically methylated mononucleosomes that
carry both H3K36me3/2 and H3K27me3/2 on two separate
H3 tails in ES or HeLa cells [82], and such bivalent
mononucleosomes may represent the sites where PHF1/
19–PRC2 complexes act [38]. However, the overall biologi-
cal role of the PCL proteins is complex, because it has
recently been shown that in vitro, binding of the PHF1
Tudor domain to H3K36me3-containing nucleosomes
decreases the methyltransferase activity of PRC2 [39].
Furthermore, Tudor-mediated binding to H3K36me3/2 is
also required for efficient recruitment of PHF1 to sites of
DSBs during response to DNA damage [39], but the exact
function of PHF1 in DNA repair remains to be studied.
Taken together, these studies provide a novel mechanism
for PRC2 complexes to gain access and target the chroma-
tin regions that harbor active genes, where PRC2 and
associated factors establish de novo transcriptional silenc-
ing that is required for differentiation and development.

LBR Tudor – reader of heterochromatin and H4K20me2

The lamin-B receptor (LBR) is an inner nuclear membrane
protein that plays a crucial role in functional organization
of nuclear architecture, particularly, in the formation and
maintenance of nuclear peripheral heterochromatin [83].
In humans, LBR mutations cause Pelger–Huët anomaly,
which is characterized by an aberrant neutrophil nuclear
shape [84]. In murine models, deletions of LBR and lamin-
A/C lead to loss of peripheral heterochromatin, an inverted
architecture with heterochromatin localizing to the nucle-
ar interior, and perturbation in expression of genes associ-
ated with development [85]. The N-terminal part of LBR is
responsible for heterochromatin association [83], and con-
tains a Tudor domain (Table 1). Deletion of Tudor renders
LBR more mobile at the nuclear envelope [84,86]. A recent
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study reported that the LBR Tudor domain binds
H4K20me2, a heterochromatin-associated histone PTM
[84], although another study indicated that the domain
confers a ‘chaperone-like’ binding to histones [86]. These
studies suggest a role of Tudor, possibly via interaction to
heterochromatin PTMs, for LBR-mediated heterochroma-
tin formation at the nuclear periphery. Further examina-
tion of LBR Tudor and its binding partners needs to be
performed.

Multivalent read-out of histone PTMs by Tudor and
linked reader modules
Tudor domains not only engage their preferred histone
PTMs by a structurally defined cage or pocket (Figure 1),
but also establish direct contacts to the surrounding his-
tone sequences. The combination of these interactions
contributes to the binding specificity, selectivity, and affin-
ity of Tudor-domain proteins. In addition, Tudor domains
often exist in proximity to other putative reader domains
(Table 1), indicating multivalent engagement of different
histone PTMs by the linked reader modules [3]. A promi-
nent case of multivalency is the PHD–linker–bromodo-
main cassette of bromodomain PHD finger transcription
factor (BPTF), where the two separated reader domains
harbor capacities to bind to H3K4me3 and H4K16ac, re-
spectively. The helical linker region in between dictates a
precise relative orientation of two modules, ensuring a
simultaneous, combinatorial read-out of the two PTMs
located at separated histone tails within the same mono-
nucleosome [3,87].

Here, we discuss recent advances indicating a new mode
of multivalent recognition utilized by the tandem-Tudor–
linker–PHD cassette of UHRF1 (Table 1). Initially, studies
of individual domains within this cassette showed the
UHRF1 tandem-Tudor and PHD finger motif engage
H3K9me3 and the N terminus of histone H3, respectively
[66,88]. However, examination of the whole domain cas-
sette revealed that the intermodular linker directly inter-
acts with reader modules and facilitates formation of a
compact, ring-shaped architecture [35,37,89]. In this struc-
ture, the N terminus of H3 (A1-R2-T3-K4) is engaged by
the PHD finger, the residues 5–7 of H3 engaged by neither
PHD nor Tudor, and only a rather short histone sequence
(R8-K9me3) bound to Tudor (Figures 1E and 2E)
[35,37,89]. As a result of such structural arrangement,
binding to H3 primarily relies on the PHD finger, whereas
Tudor appears only to confer additional selectivity for
H3K9me3 [35,37,89]. Using a series of elegantly designed
H3 peptides and UHRF1 mutants, a recent study provided
supporting evidence for a mode of multivalent binding
where the linked UHRF1 modules appear to scan from
the extreme N terminus of H3 towards PTMs located
downstream [37], and this sequential read-out of histone
PTMs proposed for UHRF1 differs from a simultaneous,
combinatorial mode of engagement [87].

Interestingly, the positioning of H3 in complex with the
individual UHRF1 tandem-Tudor domain [66] is distinct
from that observed in linked modules described above. In
the former structure, residues 1–9 of H3 establish extensive
contacts to a groove on the surface of Tudor [66], whereas
this H3-binding groove is masked by the intermodular
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linker and becomes nonaccessible to H3 in the latter
[35,89]. These studies demonstrate an essential role of
the linker in defining and reshaping the mode of binding
to histones. In support, mutagenesis of two critical linker
residues, R295 and R296, disconnects the coordinated action
between reader modules, leading to abrogation of combina-
torial binding to H3/H3K9me3, reduction in chromatin
localization of UHRF1, and loss of global DNA methylation
[35]. Phosphorylation of S298, a conserved target site of
protein kinase A (PKA) kinases within the linker, shows a
similar phenotype, indicating that modulation of the linker
region might serve as a switching mechanism to regulate
UHRF1 activities under physiological conditions [35]. Of
note, unlike UHRF1, the PHD finger adjacent to PHF1/19
Tudors does not exhibit detectable histone-associating ac-
tivities and does not alter binding to H3K36me3 by Tudor
[40]. Taken together, these studies show that adjacent
reader modules can evolve and form a high-order structure
to establish various delicate mechanisms for multivalent
read-out of chromatin PTMs.

Targeting Tudor–histone interactions as potential
therapeutic interventions
Many human diseases including cancer, possess mutations
that deregulate chromatin PTM-specific ‘writers’, ‘erasers’,
or readers [5,8]. Pharmacological manipulation of these
‘writing’, ‘erasing’, and reading processes has recently
become an area of intense investigation [5,90,91]. Recently,
small-molecule inhibitors for the bromodomain and extra-
terminal (BET) bromodomain family of acetylation readers
have shown early promise in the treatment of the geneti-
cally defined midline carcinoma [92] and hematopoietic
malignancies [93–95]. Similar compounds could be devel-
oped to target other epigenetic readers that are disease
associated [5,6,90,91]. Notably, many of Tudor-containing
readers have been found to be deregulated in cancer: all
three Tudor-containing JMJD2 proteins are frequently
overexpressed in various cancers [96]; altered expression
of UHRF1 is commonly found in cancer [97]; and the recur-
rent chromosomal translocation of PHF1 and upregulation
of PHF19 have been reported among endometrial sarcoma
and solid tumors, respectively [98,99]. Designing inhibitors
that target the Tudor–histone binding interfaces may pro-
vide a unique tool not only for dissecting the role of these
interactions in normal biological processes, but also for
studying their relevance to pathogenesis. For instance,
UHRF1 inhibitors could represent an alternative way to
inhibit DNA methylation, in addition to the currently avail-
able DNA demethylating agents used for cancer therapies
[100]. A recent study has developed the first-in-class inhibi-
tor for histone methylation readers [101]. Taken together,
pioneering studies support druggability of histone methyl-
ation readers, and investigation is needed to develop potent,
specific inhibitors that target Tudor-histone interactions.

Concluding remarks
Dissecting the fundamental mechanism by which chroma-
tin modifications regulate various biological processes has
become a major focus in chromatin biology. Studies aimed
at understanding the interpretation of various chromatin
modifications have focused on identifying novel epigenetic
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effectors. Mass-spectrometry-based protein identification
following pull-down with premodified histone peptides or
nucleosomes [17,31,38,60,102,103] has proven powerful in
identifying novel, site-specific readers for chromatin PTMs
when combined with the high-throughput peptide or pro-
tein array technologies [38,104,105]. Subsequent structur-
al and biological elucidation of these chromatin-reading
modules allows a deeper understanding for the molecular
bases that underlie processes regulated by histone–reader
interactions. Recent identification of the Tudor family as
versatile effectors of histone methylation re-enforces this
theme and expands our current list of epigenetic readers.
Future experiments should help characterize linked mod-
ules, and their role in combinatorial read-out of multiple
PTMs. For instance, a novel, dual histone-reading activity
(binding of unmethylated H3K4 and H3K9 methylation)
has recently been identified in a cryptic, tandem Tudor-like
domain of SHH1 (Figure 1H) in Arabidopsis, and this
activity is required for maintaining the level of siRNAs
and RNA-directed DNA methylation in this organism [43].
In addition, evidence starts to emerge showing that Tudors
also read lysine methylation of non-histone partners, in
addition to arginine methylation [21,22]. For example, the
53BP1 tandem-Tudor domain binds to H4K20me3 and
dimethylated p53 [50,51], and that of PHF20 has been
shown to bind to lysine dimethylation of histones [106] and
p53 [107]. In the latter case, PHF20 binding to p53 stabi-
lizes p53 and promotes its activation during DNA damage
response [107]. Similarly, the Tudor domain of tudor do-
main containing 3 (TDRD3) recognizes arginine dimethy-
lation present in non-histone proteins such as the
alternative splicing factor SmB [108] and in histones, such
as asymmetric dimethylation of H4R3, H3R17, and H3R2
(Table 1) [105,109], and studies have demonstrated a
critical role of the TDRD3 Tudor domain in facilitating
gene transcription [105]. It has become increasingly criti-
cal to dissect effects that are dependent on chromatin PTM
and those that are directed through non-histone partners.
Lastly, small-molecule inhibitors that specifically target
epigenetic readers hold promise for novel therapeutic
means. Initial development of compounds could take ad-
vantage of the resolved Tudor domain structures, while
parallel efforts could be directed at examining the causali-
ty of Tudor-containing readers in oncogenesis or other
pathologies. These new pharmacological tools could allow
a dynamic manipulation of histone–reader interactions
and prove to be useful as therapeutic interventions.
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