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Acute myeloid leukemia (AML) with MLL-rearrangement (MLL-r) comprises �10% of all

AML cases and portends poor outcomes. Much remains uncovered on how MLL-r AML

drives leukemia development while preventing cells from normal myeloid differentia-

tion. Here, we identified that transcription factor MEF2D is a super-enhancer-associated,

highly expressed gene in MLL-r AML. Knockout of MEF2D profoundly impaired leukemia

growth, induced myeloid differentiation, and delayed oncogenic progression in vivo.

Mechanistically, MEF2D loss led to robust activation of a CEBPE-centered myeloid differ-

entiation program in AML cells. Chromatin profiling revealed that MEF2D binds to and

suppresses the chromatin accessibility of CEBPE cis-regulatory regions. In human acute

leukemia samples, MEF2D expression showed a strong negative correlation with the

expression of CEBPE. Depletion of CEBPE partially rescued the cell growth defect and

myeloid cell differentiation induced by the loss of MEF2D. Lastly, we show that MEF2D is

positively regulated by HOXA9, and downregulation of MEF2D is an important mecha-

nism for DOT1L inhibitor-induced antileukemia effects. Collectively, our findings suggest

that MEF2D plays a critical role in human MLL-r AML and uncover the MEF2D-CEBPE

axis as a crucial transcriptional mechanism regulating leukemia cell self-renewal and dif-

ferentiation block.

Introduction

Acute myeloid leukemia (AML) is a deadly disease characterized by 2 hallmarks: (1) unlimited proliferation
of myeloid-lineage progenitor cells and (2) impaired hematopoietic differentiation. Despite frontline chemo-
therapy, the 5-year patient survival remains lower than 30% for most majority subtypes.1 Recurrent chro-
mosomal translocation of the KMT2A (MLL) gene is found among most childhood AML and a subset
(�10%) of adult AML with a poor prognosis and limited therapeutic options.2,3 The MLL rearrangement
(MLL-r) produces a chimeric protein that recruits histone methyltransferase DOT1L-containing transcrip-
tion elongation complex to selected oncogenic transcription factors, including HOX-A cluster genes such
as HOXA9, to promote gene activation and leukemia development.4,5 Genetic or pharmacological
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Key Points

� MEF2D is highly
expressed in MLL-
rearranged AML and
required for leukemia
development in vitro
and in vivo.

� MEF2D suppresses
CEBPE-mediated
myeloid differentiation
in AML.
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inhibition of DOT1L leads to reduced MLL-r target gene expression
and impaired leukemia development in preclinical models, and the
DOT1L-specific inhibitors are being evaluated in clinical trials.6,7

Despite these efforts, MLL-r AML remains a therapeutic challenge.
The oncogenic drivers and transcriptional dependencies of MLL-r
AML remain poorly characterized.8

MEF2D is a member of MEF2 family transcriptional factors (MEF2A,
MEF2B, MEF2C, and MEF2D) and plays cellular functions in skele-
tal, cardiac, and neuronal development.9,10 MEF2 family proteins
have dual roles in both gene activation and repression by associa-
tion with different complexes.9 The transcription activity of MEF2
family proteins can be stimulated by direct interaction with CBP/
P300 coactivators.11 Upon binding of the class IIa histone/protein
deacetylases (HDACs), MEF2 proteins can switch off their tran-
scription activity and lead to transcriptional repression of target
genes.12 In development, MEF2C-null mice are embryonic lethal,
and MEF2A-null mice die perinatally, while MEF2D-null mice are via-
ble and appear normal, suggesting distinct requirements of MEF2
family members during development.13-15 In normal hemopoiesis,
MEF2D is involved in T-cell and early B-cell development.16-19

Recently, chromosomal translocations involving MEF2D have been
reported in B-cell acute lymphoblastic leukemia (B-ALL) cases,
although the molecular function of MEF2D-fusion proteins still
requires further studies.20-22 Despite these pieces of knowledge,
the biological function of wildtype MEF2D and its transcriptional tar-
gets in AML remain elusive.

The CCAAT/enhancer-binding protein « (CEBPE), a DNA-binding
transcription factor of the C/EBP family, has been known as a mas-
ter regulator for myeloid cell differentiation.23-26 CEBPE knockout
mice fail to undergo normal granulocytic differentiation and ultimately
develop myelodysplasia phenotypes.24 Ectopic expression of
CEBPE can induce monocytic differentiation in MLL-r AML cells.27

Interestingly, CEBPE has recently been reported to be an indepen-
dent prognostic factor in human AML patients.28 Low-CEBPE levels
strongly predict shorter overall survival and higher relapse rate.28

Recently, the Ikaros transcription factor Ikzf2 has been shown to
repress the expression of CEBPE to promote leukemogenesis.29 A
distal enhancer of murine CEBPE, which is located 6 kb down-
stream from its transcriptional start site, has been reported to be
required for CEBPE expression and normal granulocyte differentia-
tion.30 However, how MLL-r AML suppresses CEBPE expression to
prevent normal myeloid differentiation remains to be explored.

Here, we report that MEF2D is significantly elevated in MLL-r patient
AML samples and investigated the role of MEF2D in the regulation
of CEBPE and AML maintenance using both in vitro and in vivo leu-
kemia models.

Methods

The detailed procedures of cell culture, plasmid construction, anti-
bodies, virus production and infection, clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9)-mediated gene knockout, inhibitor treatment, quan-
titative real-time polymerase chain reaction (qRT-PCR), immunoblot-
ting, flow cytometry, RNA-sequence and data analysis, Gene Set
Enrichment Analysis (GSEA), chromatin immunoprecipitation (ChIP)
and sequencing, Assay for Transposase Accessible Chromatin with
high-throughput sequencing (ATAC-seq), as well as the detailed

information for ChIP-seq and ATAC-seq data analysis are described
in supplemental Methods.

Primary samples

Samples were obtained from AML patients with MLL-
rearrangements seen at the University of Alabama at Birmingham.
Mononuclear cells were isolated by Ficoll-Hypaque (Sigma Diagnos-
tics, St. Louis, MO) separation. All subjects signed an informed con-
sent form. Sample acquisition was approved by the Institutional
Review Board at the University of Alabama at Birmingham Hospital,
in accordance with an assurance filed with and approved by the
Department of Health and Human Services, and met all require-
ments of the Declaration of Helsinki. Normal CD341 cells were iso-
lated from umbilical cord blood mononuclear cells using
immunomagnetic beads (Miltenyi Biotech, Auburn, CA).

Competitive proliferation assay

Cas9-expressing cell lines were infected with individual single guide
RNAs (sgRNAs) in LRCherry2.1 mCherry-expressing vector, fol-
lowed by measurement of the percentage of mCherry-positive cells
at indicated days post-infection using flow cytometry. The percent-
age of mCherry-positive cells at later time points was normalized to
the percentage at the specified initial time point.

In vivo leukemia growth in xenograft models

All animal experiments were approved by the Institutional Animal
Care and Use Committees at the University of Alabama at Birming-
ham. Detailed procedures are available in supplemental Methods.

Statistical analyses

Data are presented as the mean 6 standard error of the mean from
3 independent experiments unless otherwise noted. Statistical analy-
ses were performed by 2-tail Student t test for comparing 2 sets of
data with assumed normal distribution unless otherwise noted.
Mann-Whitney U test was performed for data sets not showing a
normal distribution. x2test was performed for categorical variables.
Survival analyses were performed by using log-rank test with Graph-
Pad Prism software (v8.0). *, **, and *** denote p values , .05, .01,
and .001, respectively. NS denotes not significant.

Results

MEF2D is upregulated among primary samples of

MLL-rearranged AML patients

Super-enhancers, which are formed by clusters of transcriptional
enhancers, are occupied by exceptionally high levels of active
enhancer-associated histone marks such as H3K27ac and tend to
drive robust gene expression.31,32 In cancer cells, super-enhancer-
associated genes are significantly enriched with genes important for
tumor function, including oncogenic transcription factors, cell cycle
regulators, antiapoptotic factors, and genes specific to the tumor’s
cell of origin.31,33-36 To identify novel targets for putative therapeutic
intervention in AML, we performed super-enhancer profiling using
publicly available H3K27ac ChIP-seq datasets in a panel of human
AML cell lines and normal CD34-positive hematopoietic stem and
progenitor cells. We identified a robust super-enhancer occupation
at the MEF2D locus in a subtype of AML samples (mostly MLL-r
AML) (Figure 1A). The MEF2D super-enhancer is not present in
normal human CD341 hematopoietic stem and progenitor cells
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(HSPCs) or in cell lines without MLL-fusion (Figure 1A). We also
confirmed the presence of MEF2D super-enhancer in primary
human MLL-r AMLs (supplemental Figure 1A).

In normal development, MEF2D is expressed at high levels in spe-
cific tissues such as brain and muscle.9 Interestingly, in human can-
cer, MEF2D is expressed at the highest levels in AML in
comparison with all other cancer types (supplemental Figure 1B).
We examined MEF2D mRNA and protein expression in 8 different
leukemia cell lines and found MEF2D was highly expressed in MLL-r
leukemia lines but not non-MLL-r lines (Figure 1B-C). Consistently,
MEF2D expression is elevated in AML patients harboring MLL rear-
rangement, compared with other AML subtypes or healthy controls
(Figure 1D). Using primary human samples, we also confirmed that
MEF2D is expressed at a significantly higher level in primary MLL-
rearranged AML samples relative to normal CD341 bone marrow
cells isolated from healthy donors (Figure 1E). Furthermore, analysis

of independent AML datasets showed that high MEF2D expression
is strongly associated with poor survival (Figure 1F and supplemen-
tal Figure 1C), supporting a potential oncogenic role of MEF2D in
AML.

MEF2D promotes the survival and self-renewal of

leukemia cells in vitro, as well as tumorigenesis in

xenografted animal models

To determine whether MEF2D plays a role in leukemic cells, we
employed the CRISPR/Cas9-mediated gene knockout strategy to
ask whether loss of MEF2D affects leukemia cell proliferation. We
selected 2 sgRNAs targeting MEF2D at different exons and a
Luciferase-targeting guide RNA as a negative control. By using a
competition-based proliferation assay in a panel of 8 leukemia cell
lines,37 we found that targeting MEF2D impaired the growth of 4
MLL-r leukemia lines (MOLM-13, MV4-11, OCI-AML2, and THP-1)
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Figure 1. MEF2D is a super-enhancer gene overexpressed in human MLL-r AML and predicts poor survival. (A) H3K27ac ChIP-seq tracks in human AML cells

with or without MLL gene fusion, as well as in CD341 normal HSPCs. Super-enhancer regions were highlighted in MLL-r cell lines. Shown are cell line names and source

data accession numbers in the Gene Expression Omnibus repository. (B-C) MEF2D mRNA (B) and protein (C) expression in MLL-r and non-MLL-r human AML cell lines.

(D) MEF2D expression in various human AML subgroups, comparing to the healthy bone marrow control (GSE13159). (E) qPCR analysis of MEF2D expression in primary

MLL-rearranged AML samples (n 5 7) and normal CD341 bone marrow cells isolated from healthy donors (n 5 6). (F) Survival analysis in The Cancer Genome Atlas

(TCGA) AML patients with high or medium MEF2D expression (n 5 100), comparing to those with low MEF2D expression (n 5 50). ***P , .001.
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but not the non-MLL-r leukemia lines (HEL, U937, SET-2, and
K562) (Figure 2A-B). In contrast, a guide RNA targeting the pan-
essential gene RPS19 impaired the proliferation of all 8 cell lines
with similar efficiency, while the guide RNA targeting Luciferase
gene did not affect cell proliferation (Figure 2C-D). We further con-
firmed that guide RNAs targeting different exons of MEF2D signifi-
cantly reduced MEF2D protein levels in all 8 tested AML cell lines
(Figure 2E). To further exclude the off-target effects that could occur
in CRISPR/Cas9-mediated gene knockout, we selected an addi-
tional specific guide RNA targeting a MEF2D intron-exon junction
region (Figure 2F), and this guide RNA also efficiently suppressed
MLL-r AML growth and MEF2D expression (supplemental Figure
2A-B). As this guide RNA contains several mismatches to the
human MEF2D complementary DNA (cDNA), it did not affect the
exogenous expression of MEF2D (Figure 2F-G; supplemental Figure
2C). In this setting, we observed that the antiproliferation effect of
MEF2D knockout could be rescued by exogenous expression of
MEF2D in both MOLM-13 and MV4-11 cell lines (Figure 2H; sup-
plemental Figure 2D), supporting an on-target effect of our CRISPR
knockout study.

To systematically investigate the requirement of MEF2D in acute leu-
kemia cells, we interrogated genome-wide CRISPR/Cas9 loss-of-
function screens38 and analyzed the expression and dependency of
MEF2D in 23 AML and 14 ALL cell lines. Interestingly, the depen-
dency of MEF2D is significantly correlated with its expression level
in both AML and ALL cells (supplemental Figure 2E-F). Consistent
with our observations in AML cell lines and primary samples,
MEF2D is expressed at significantly higher levels in MLL-r AML
(supplemental Figure 2G), in which loss of MEF2D led to a more
profound growth defect (supplemental Figure 2H). In ALL, we
noticed that many MEF2DHigh cell lines do not carry MLL rearrange-
ments (supplemental Figure 2F), indicating that other mechanisms
may be involved in driving MEF2D expression. Our data also sug-
gest that MEF2D may be required for certain non-MLL-r leukemias
expressing high MEF2D levels. Indeed, in the non-MLL OCI-AML3
AML cell line where MEF2D is highly expressed (supplemental Fig-
ure 2E), knockout of MEF2D strongly impaired cell growth (supple-
mental Figure 2I-J). Collectively, our data suggest that MEF2D is a
novel dependency in leukemias with aberrant MEF2D expression,
such as MLL-r AML.

We further characterized MEF2D knockout AML cells by cellular
analysis of cell apoptosis, cell cycle, and differentiation. We found
that MEF2D knockout led to induction of apoptosis and increased
sub-G1 cell population in different MLL-r AML cell lines (Figure 3A;
supplemental Figure 3A-B), while the cell cycle distribution remained
largely unaffected (supplemental Figure 3D-F). Furthermore, MEF2D
depletion resulted in significant granulocytic and monocytic cell

differentiation of leukemia cells, as measured by Wright-Giemsa
staining and flow cytometry analysis of myeloid differentiation
markers in MOLM-13 cells (Figure 3B-D). Similar cell differentiation
phenotype was also observed in MEF2D-deficient MLL-r cell lines
such as MV4-11 and THP-1 (supplemental Figure 3F-I). To examine
the relevance of MEF2D to leukemia progression in vivo, Luciferase-
expressing MOLM-13 cells were transduced with control and
MEF2D sgRNAs and transplanted into immune-deficient recipient
mice. The expression of MEF2D sgRNA resulted in a remarkable
delay in leukemia progression (Figure 3E-F) and prolonged survival
of the recipient mice (Figure 3G). The terminal leukemic cells in the
MEF2D sgRNA group had similar protein levels of MEF2D to those
from the control group (supplemental Figure 4J), indicating that the
mice succumbed to an outgrowth of cells that escaped MEF2D
depletion. Together, these data support a critical requirement of
MEF2D for the maintenance of MLL-r AML in vitro and in vivo.

MEF2D inhibits CEBPE-centered myeloid

differentiation programs in AML

To gain a genome-wide insight into how MEF2D regulates the tran-
scriptional program of MLL-r leukemia, we performed RNA sequenc-
ing in MEF2D wildtype and knockout MOLM-13 cells. We identified
358 upregulated and 396 downregulated genes by knocking out of
MEF2D (fold change . 1.5, FDR , 0.05) (Figure 4A; supplemental
Table 1). In agreement with MEF2D’s known role in neural and mus-
cle development, Gene Set Enrichment Analysis (GSEA) showed
that genes downregulated by MEF2D knockout are enriched for ner-
vous system development and skeletal muscle development, sug-
gesting that MEF2D conservatively regulates a set of developmental
genes in AML (Figure 4B; supplemental Figure 4A). Consistent with
our cellular assays, we found that MEF2D positively regulates genes
associated with stem cell maintenance and acute myeloid leukemia
(Figure 4B). Gene ontology analysis also revealed a remarkable
enrichment of genes involved in the granulocytic/myeloid process in
the upregulated genes (Figure 4B; supplemental Figure 4B). Con-
sistently, many genes associated with myeloid process or differentia-
tion, such as BPI, MS4A3, and MPO,39-41 were significantly
upregulated in MEF2D-deficient leukemia cells, while HDAC9, a
canonical MEF2 target,42 was downregulated (Figure 4C).

To further understand the altered transcription programs upon
MEF2D loss, we performed a genome-wide ATAC-seq.43 MEF2D
loss led to profound changes in chromatin accessibility, with a gain
of 2004 peaks and a loss of 2256 accessible peaks (Figure 4D;
supplemental Table 2). Consistent with transcriptomic changes,
genomic regions with increased accessibility are enriched in
myeloid lineage differentiation pathways (Figure 4E), while regions
with reduced accessibility are enriched for genes in various

Figure 2. MEF2D is specifically required for MLL-rearranged AML. (A-D) Competitive proliferation assay showing that MEF2D is required for cell proliferation in MLL-r

AML cells (left, green text) but not in non-MLL-r cells (right, black text). Cells were infected with indicated guide RNA, which is linked with an mCherry gene. The mCherry

positive percentage was normalized to the day 3 measurement. Two independent guide RNAs targeting MEF2D exon 4 (e4.1; A) and exon 5 (e5.1; B) were used. An sgRNA

targeting the pan-essential genes RPS19 (C) was used as a positive control and an sgRNA targeting the Luciferase gene sgLuc (D) was used as a negative control.

(E) Western blot analysis showing CRIPSR/Cas9-mediated MEF2D gene knockout in 4 MLL-r AML cells (green) and 4 non-MLL-r AML cells (black). Two independent guide

RNAs targeting MEF2D exon 4 (e4.1) and exon 5 (e5.1) were used. GAPDH serves as a loading control. (F) Comparison of MEF2D genomic and cDNA sequences at

sgRNA (e2.1) recognition sites. Dots (�) indicate mismatches. PAM, protospacer-adjacent motif. (G) Western blot analysis showing MEF2D protein levels in indicated sam-

ples. Empty, empty vector; OE, overexpression. (H) Competitive proliferation assay in indicated MOLM-13 Cas9-expressing cell lines showing the effects upon MEF2D loss

can be rescued by exogenous expression of MEF2D.

23 NOVEMBER 2021 • VOLUME 5, NUMBER 22 ESSENTIAL ROLES OF MEF2D IN MLL-r AML 4731



developmental processes and cell adhesion pathways (Figure 4F).
These results further support that MEF2D represses myeloid differ-
entiation programs in leukemia cells. To identify key transcriptional
regulators responsible for the myeloid differentiation phenotype
induced by MEF2D knockout, we performed motif analysis on the
regions with increased chromatin accessibility in MEF2D-
deficient AML cells. We first scanned a collection of 769 human
transcription factors and found that the motifs of C/EBP factors
were significantly enriched in the peaks with a gain of ATAC-seq
signal (Figure 4G). De novo motif analysis also revealed C/EBP
binding sequence as the top enriched motif (P 5 102124,
observed/expected 5 4.1) (Figure 4H). Similar analysis of the

regions with decreased ATAC-seq signal revealed AP-1 and
MEF2 binding sequences as top enriched motifs (supplemental
Figure 4G-H), indicating a role of MEF2D in gene activation.
Consistent with our motif analysis, we observed that the genes
regulated by the myeloid C/EBP network were significantly upre-
gulated in MEF2D-knockout leukemia cells (Figure 4I). We next
examined the expression of all 6 C/EBP family genes and found
that CEBPE was the only C/EBP factor showing significant upre-
gulation when MEF2D is lost (Figure 4J-K). From RNA-seq data,
we also observed many known CEBPE target genes, including
S100A8, S100A9, BPI, and MSA4A3, were significantly upregu-
lated by MEF2D knockout (Figure 4C). Altogether, our data
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Figure 3. MEF2D knockout promotes myeloid differentiation and delays in vivo leukemogenesis of MLL-r AML. (A) Analysis of apoptotic cells in MOLM-13
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indicated sgRNAs at 10,15, 26-, and 32-day post injection. *All mice receiving MOLM-13 cells transduced with control guide RNA (sgROSA26) were dead before the

day 26 measurement. (G) Kaplan–Meier survival curves of recipient mice transplanted with MOLM-13 cells expressing indicated sgRNAs.***P , .001; na, not analyzed.
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support that MEF2D actively represses a CEBPE-centered mye-
loid differentiation program in leukemia cells.

MEF2D binds to the CEBPE enhancer, maintains a

repressive chromatin status, and inhibits gene

transcription

Next, we examined how MEF2D regulates CEBPE expression.
Firstly, we sought to validate that MEF2D negatively regulates

CEBPE expression by performing MEF2D knockout in 3 indepen-
dent MLL-r AML models. We found that CEBPE, together with its
target genes, such as S100A8 and S100A9, were significantly
increased after MEF2D knockout in all examined AML cells (Figure
5A). Western blot analysis also showed increased CEBPE protein
levels in MEF2D-knockout cells (Figure 5B). Next, we performed
chromatin immunoprecipitation coupled with sequencing (ChIP-seq)
to determine genome-wide MEF2D binding sites in MOLM-13 and
MV4-11 cells. MEF2D binding patterns were highly similar between
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MOLM-13 and MV4-11 cells, and we identified 33239 peaks with
consistent binding in both AML models (Figure 5C; supplemental
Table 3). Genomic localization analysis showed �31.6% of MEF2D
peaks at gene promoters and 68.4% of the peaks at putative distal,
intergenic, and intragenic enhancers (Figure 5D). As expected, the
MEF2 motif was among the top enriched motifs within the MEF2D
peaks (Figure 5E). Importantly, MEF2D peaks were found at the
enhancer and promoter regions of CEBPE, and loss of MEF2D
caused strong gain of chromatin accessibility specifically at the
CEBPE enhancers regions, but not at the CEBPE promoter (Figure
5F). We further validated the binding of MEF2D at CEBPE
enhancer regions by chromatin immunoprecipitation followed by
quantitative reverse transcription polymerase chain reaction (ChIP-
qPCR) (Figure 5G). As MEF2D could act as a transcriptional
repressor with histone deacetylase proteins, we hypothesized that
MEF2D represses CEBPE expression by removing histone acetyla-
tion at CEBPE enhancers. To test this hypothesis, we performed
ChIP assay for H3K27ac, a histone mark demarcating active
enhancers. We found that depletion of MEF2D led to significantly
increased levels of H3K27ac at CEBPE enhancers (Figure 5H).
Lastly, we examined independent leukemia gene expression data-
sets and found that MEF2D shows a strong negative correlation
with CEBPE in primary AML samples (Figure 5I-K). Interestingly,
MFE2D expression also reversely correlates with CEBPE in ALL
patient samples (Figure 5L), indicating that the MEF2D-CEBPE axis
may also be present in other leukemia types. Overall, these results
demonstrate that MEF2D transcriptionally regulates CEBPE expres-
sion in human AML.

CEBPE is a critical downstream effector of MEF2D

in MLL-r AML

To access the functional significance of the MEF2D-CEBPE axis in
MLL-r AML, we asked whether depletion of CEBPE could reverse
the cellular effects from MEF2D knockout. We established constitu-
tive CEBPE knockout lines in MOLM-13 cells using 2 independent
guide RNAs (Figure 6A) and examined the impact of MEF2D deple-
tion on control and CEBPE knockout cell lines. Notably, CEBPE-
deficient cells, but not CEBPE-wildtype cells, were more resistant to
MEF2D loss, as determined by a competitive proliferation assay
(Figure 6B). In addition, depletion of CEBPE could also partially res-
cue MEF2D knockout-induced growth defects in other MLL-r AML
cells, including MV4-11 and THP-1 (supplemental Figure 5A-D).
More importantly, CEBPE depletion largely abolished the increased
leukemia cell differentiation caused by MEF2D knockout (Figure 6C-
E). Lastly, we examined the expression of granulocytic differentiation
genes such as S100A8 and S100A9. We found that CEBPE
depletion could reverse the activation of S100A8 and S100A9
when MEF2D is lost (Figure 6F-G). These results suggest that
MEF2D plays an essential role in repressing hematopoietic differen-
tiation programs, a process heavily relying on the activation of
CEBPE.

MLL-fusion protein promotes MEF2D expression via

HOXA9-mediated gene activation

Lastly, we sought to understand how MEF2D expression is upregu-
lated in MLL-r AML. Previous evidence suggests that MLL-fusion
proteins (MLL-FPs) connect MLL to the DOT1L/H3K79me2 methyl-
transferase complex for target gene activation.4,44,45 We asked
whether disruption of MLL-r transcription program by inhibition of

DOT1L would affect MEF2D expression. To this end, we treated
MOLM-13 cells with DOT1L-specific inhibitor SGC0946,46 which
significantly reduced the expression of MLL-FP targets such as
HOXA9 (Figure 7A). Interestingly, MEF2D mRNA and protein levels
were also downregulated by DOT1L inhibition, with CEBPE expres-
sion levels upregulated (Figure 7A-B). Similar results were also
observed in other independent MLL-r AML lines MV4-11 and THP-
1 (supplemental Figure 6A-D). Consistent with MEF2D gene
expression change, DOT1L inhibition led to reduced super-
enhancer signal at MEF2D gene, as indicated by the binding of the
super-enhancer marker BRD4 (Figure 7C).

We then examined whether MEF2D is a direct target of MLL-FP by
analyzing previously reported MLL-FP ChIP-seq datasets.4 While
the MLL-AF9 fusion protein binds to its known targets such as
HOX-A cluster genes and MEIS1, no significant binding signal was
detected at MEF2D gene locus including its super-enhancer region
(supplemental Figure 6C-E), suggesting that MEF2D may be indi-
rectly regulated by MLL-FP. HOXA9 is a key target of MLL-FP and
an important regulator of AML cell self-renewal.47 Considering the
high expression levels of MEF2D in MLL-r AML (Figure 1B-E), we
asked whether MEF2D is indirectly upregulated by MLL targets
such as HOXA9. Previous Hoxa9 ChIP-seq in Hoxa9/Meis1-trans-
formed murine leukemia cells suggests potential Hoxa9 binding at
Mef2d super-enhancer regions (Figure 7D). Interestingly, analysis of
a published microarray dataset48 revealed that knockdown of
HOXA9 led to reduced MEF2D expression in MOLM-14 human
MLL-AF9 AML cells (supplemental Figure 6F). In a nascent RNA-
seq dataset from a tamoxifen-inducible HoxA9-ER leukemia cell
line,49 Mef2d mRNA levels also showed rapid downregulation fol-
lowing Hoxa9 inactivation (supplemental Figure 6G). Moreover,
ectopic expression of murine Hoxa9 completely restored MEF2D
levels in DOT1L inhibitor-treated AML cells, and also blocked the
upregulation of CEBPE (Figure 7E; supplemental Figure 6H). In
AML patients, MEF2D expression levels were significantly higher in
AMLs with high HOXA9 expression, while CEBPE levels were sig-
nificantly reduced (Figure 7F; supplemental Figure 6I-J). These
results support HOXA9 as a positive regulator of MEF2D in leuke-
mia cells.

Finally, we accessed the functional significance of MEF2D inhibition
in DOT1L-mediated antileukemia effects. We constitutively
expressed MEF2D in MOLM-13 AML cells to restore MEF2D
expression levels following DOT1L inhibition (Figure 7G). Overex-
pression of MEF2D not only suppressed basal CEBPE expression
levels but also blocked the upregulation of CEBPE induced by
DOT1L inactivation (Figure 7G). Consistent with the rescue effect
on CEBPE expression, sustained MEF2D levels also reversed
DOT1L inhibitor-induced myeloid differentiation and induced
significant resistance to DOT1L inhibition (Figure 7H-K). Together,
these data suggest that downregulation of MEF2D is an
important mechanism for DOT1L inhibitor-triggered antileukemia
effects.

Discussion

CEBPE has been known as a master regulator of myeloid cell devel-
opment.23-26 The expression of CEBPE is suppressed in MLL-r
AML and strongly predicts disease outcome.28 However, little is
known about how CEBPE is dynamically regulated in normal and
malignant hematopoiesis. Previous work has identified an enhancer
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located several kilobases downstream of CEBPE and depletion of
this enhancer led to reduced CEBPE expression.30 Our study
shows that MEF2D is a novel transcriptional regulator of CEBPE
and the MEF2D-CEBPE axis plays an important role in MLL-r AML.
Interestingly, in both human AML and B-ALL samples, we also
observed a strong negative correlation between MEF2D and
CEBPE expression. It would be interesting to investigate whether
MEF2D regulates CEBPE expression in normal hematopoiesis and
other leukemia contexts. On the other hand, as depletion of CEBPE
could only partially rescue MEF2D loss-induced effects, other
MEF2D targets might mediate the pro-leukemia function of MEF2D.
Indeed, our ChIP-seq and RNA-seq data indicate that MEF2D can
bind to and activate genes such as FLT3 and TRIB1, which were
previously reported as oncogenic factors in AML development.50,51

These genes may also be crucial for MEF2D-mediated AML
progression.

Previous studies have shown that MEF2C is a critical target of MLL-
fusion proteins and plays an essential role in leukemia develop-
ment.52 MEF2 proteins have both overlapping and divergent func-
tions in many development processes. For example, during muscle
regeneration upon injury, deletion of individual Mef2a, Mef2c, or
Mef2d genes in satellite cells does not affect muscle regeneration,
while muscle regeneration is completely abolished when the 3
genes are deleted in combination.53 Similarly, both Mef2c and
Mef2d are activated in early B-cell development; however, knockout
of either single gene does not cause abnormality, while significant
B-cell development defect can be only identified in Mef2c/d double
knockout mice.16 Our data and previous studies on MEF2C collec-
tively suggest that both MEF2C and MEF2D are required for MLL-r
AML progression, as depletion of either factor causes profound
defects in leukemia development. It is possible that MEF2C and
MEF2D regulate different sets of target genes to promote leukemia
development. As MEF2 proteins form homo- and heterodimers that
constitutively bind to response elements,54 another possible expla-
nation is that MEF2C and MEF2D proteins form heterodimers to
achieve maximal protein stability and/or transcriptional activity in
MLL-r AML. Whether and how MEF2D and MEF2C crosstalk with
each other in MLL-r AML represents an interesting area of future
investigation.

We also show that the MLL-FP target HOXA9 binds to MEF2D
super-enhancer and contributes to MEF2D gene activation.
Because super-enhancers are often enriched with binding of multi-
ple tissue-specific transcription factors, it is likely that there are other
transcription factors activating MEF2D gene expression. Our results
also demonstrate that aberrant MEF2D expression can be sup-
pressed by DOT1L inhibition, possibly through downregulation of
HOXA9. Importantly, enforced MEF2D expression could block
DOT1L inhibitor-caused antileukemia effects such as growth defect

and myeloid differentiation. Therefore, our data support that downre-
gulation of MEF2D is an important mechanism underlying DOT1L
inhibitor-mediated therapeutic effects in MLL-r AML.

Altogether, our study has shown that highly expressed MEF2D in
MLL-r leukemias is linked to a suppressed CEBPE pathway, thereby
causing aberrant self-renewal and differentiation blockage. This new
knowledge provides a possibility that disrupting the MEF2D-CEBPE
regulatory axis might serve as a therapeutic strategy for AML
patients. Although our study was focused on MLL-r AML where
MEF2D is highly expressed, our data indicated MEF2D could be
equally crucial in specific non-MLL-r AML or ALL cases with
MEF2D overexpression. The concept generated here may have
broader implications in other leukemia subtypes.
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