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Dysregulation of the oncogenic transcription factor HOXA9 is a prominent

feature for most aggressive acute myeloid leukemia cases and a strong indi-

cator of poor prognosis in patients. Leukemia subtypes with hallmark

overexpression of HOXA9 include those carrying MLL gene rearrange-

ments, NPM1c mutations, and other genetic alternations. A growing body

of evidence indicates that HOXA9 dysregulation is both sufficient and nec-

essary for leukemic transformation. The HOXA9 mRNA and protein regu-

lation includes multilayered controls by transcription factors (such as

CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF,

DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), micro-

RNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as

HOTTIP), three-dimensional chromatin interactions, and post-translational

protein modifications. Recently, insights into the dynamic regulation of

HOXA9 have led to an advanced understanding of the HOXA9 regulome

and provided new cancer therapeutic opportunities, including developing

inhibitors targeting DOT1L, menin, and ENL proteins. This review sum-

marizes recent advances in understanding the molecular mechanisms con-

trolling HOXA9 regulation and the pharmacological approaches that

target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
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Introduction

HOX gene family

The homeobox gene family was first discovered

through genetic characterization of functional genes

responsible for Drosophila development [1,2]. HOX

gene family is the central homeobox gene family of

transcription factors (TFs), and members of this family

are highly conserved, carrying a 61 amino acid helix-

turn-helix DNA binding homeodomain [3–6]. The

HOX gene family played a fundamental role in con-

trolling gene expression in early development, includ-

ing body specification, pattern formation, and cell fate

determination during metazoan development [7–9].
The TFs coded by the HOX gene cluster are evolution-

arily conserved. A total of 39 HOX genes in mammals

have been classified into four clusters, including

HOXA on chromosome 7, HOXB on chromosome 17,

HOXC chromosome 12, and HOXD on chromosome

2. Within each cluster, there are 13 paralog genes

marked by sequence similarity and position. There are

two exons and one intron in each HOX gene, and a

120-nucleotide sequence in exon 2 encodes a conserved

homeobox domain [10]. During normal development,

the expression of HOX genes within each cluster corre-

sponds to their positions following the direction from

the 30 side (anterior) to the 50 (posterior) along the

anterior–posterior axis. In general, the HOX genes

expressed earlier at 30 than those at the 50 in the cluster

during development [11,12]. HOX genes’ strict tempo-

ral and spatial control is critical to establish patterning

and morphogenesis in the vertebrate embryos [13,14].

Role of HOXA9 in normal hematopoiesis

During normal hematopoiesis, most expressed HOX

genes belong to the HOXA, HOXB, and HOXC clus-

ters [15]. In general, HOX genes are highly expressed

in hematopoietic stem cells (HSCs) and immature pro-

genitor cells, while they are downregulated in more

lineage-committed and terminally differentiated cell

populations [16,17]. Different HOX clusters are

expressed in specific lineage-restricted patterns. For

instance, HOXA cluster genes are frequently expressed

in myeloid cells, HOXB cluster genes in erythroid cells,

and HOXC cluster genes in lymphoid cells [18]. HOXA

5-10 genes, including HOXA9, are highly expressed in

hematopoietic stem and progenitor cells (HSPCs) and

are crucial for maintaining HSPCs [16]. As HSPCs dif-

ferentiate and become fully mature, the HOXA 5-10

genes are downregulated and epigenetically silenced

[16]. This coordinated regulation of HOXA gene

expression is mediated by various epigenetic factors

modulating histone methylation, acetylation, and

DNA methylation (Fig. 1). In general, two master reg-

ulators of HOXA9 expression, the mixed-lineage leu-

kemia proteins and the polycomb group histone

methyltransferases, activate and repress HOXA9 tran-

scription, respectively. Mixed-lineage leukemia (MLL)

methyltransferase MLL1 (KMT2A) positively regu-

lates HOXA9 expression through trimethylation of his-

tone 3 lysine 4 (H3K4me3) at its promoter [19]. In

contrast, the HOXA9 transcription is repressed by the

sequential activity of polycomb repressive complexes

PRC1 and PRC2, responsible for trimethylating his-

tone 3 lysine 27 (H3K27me3) [20]. In addition,

HOXA9 expression is highly correlated with

H3K79me2 methylation status, and Dot1L, an H3K79

methyltransferase required for sustaining Hoxa9

expression in HSCs [21]. HSC differentiation also leads

to the accumulation of DNA methylation at the

HOXA 5-10 cluster, mediated by de novo methyltrans-

ferases DNMT3A and DNMT3B, further ensuing gene

silencing and protecting aberrant HOX gene activation

in more mature hematopoietic cells [22,23].

HOXA9 plays a crucial role in hematopoiesis [24].

Overexpression of HOXA9 in mice enhances the prolif-

eration of hematopoietic stem and myeloid progenitor

cells, leading to leukemogenesis in the long run [18].

Conversely, knockout of HOXA9 in mice diminishes

the number of myeloid progenitors, inducing cell dif-

ferentiation into the erythroid lineage with maturation

[25]. Similarly, HOXA9-deficient mice show marked

deficiencies in myeloid progenitors, granulocyte/mono-

cyte precursors, and lymphoid precursors [26,27].

Taken together, HOXA9 functions as a critical regula-

tor of hematopoiesis, essential for the maintenance of

HSC and their differentiation into myeloid lineages.

HOXA9 deregulation in leukemia

Overexpression of HOXA9 is found in about 70% of

acute myeloid leukemia (AML) cases and a subset of

acute lymphoid leukemia (ALL) cases (Table 1,

Fig. 2). HOXA9 deregulation often coincides with

genetic alterations, including MLL rearrangements

(MLL-r), nucleophosmin 1 in cytoplasmic mutations

(NPM1c), NUP98- fusions, and caudal-type homeobox

2 (CDX2) overexpression [28–31]. Other genetic alter-

ations, such as EZH2 loss-of-function mutation [32],

BCOR/BCORL1 [33], ASXL1 [34], and DNMT3A [35],

have also been linked to HOXA9 overexpression.

HOXA9 overexpression is also found in ˜ 10% of ALL

cases, mostly associated with MLL translocations [36].

The MILE cohort patient’s data confirmed that
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HOXA9 is extremely highly upregulated in MLL-r

AML and B-ALL patients than other leukemia sub-

types [37]. More specifically, in AML and ALL,

HOXA9 expressed at a high level at 100% of AML

with t(11q23)/MLL group, 83% of AML complex

aberrant karyotype group, 75% of AML with normal

karyotype group, and 81% of Pro-B-ALL with t

(11q23)/MLL group than all other patient’s case

groups compared with healthy bone marrow groups.

Only 21% of AML with inv(16)/t(16;16), 6% of ALL

with t(1;19), 4% of c-ALL/Pre-B-ALL without t(9;22),

and 1% of c-ALL/Pre-B-ALL with t(9;22) patients

showed overexpression of HOXA9. On the contrary,

there are rare cases of AML with t(8;21), AML with t

(15;17), ALL with hyperdiploid karyotype, ALL with t

(12;21), and mature B-ALL with t(8;14), overexpres-

sing HOXA9 compared with healthy bone marrow

patient’s cases [37] (Fig. 2). In addition, T-ALL

patients bearing inv(7), CALM-AF10, or SET-NUP214

fusions also exhibit HOXA9 activation [38,39]. These

diverse oncogenic pathways that lead to HOXA9 over-

expression imply that HOXA9 plays an important role

in promoting leukemogenesis.

HOXA9 protein shows a significant correlation with

poor prognosis in AML patients. It has been demon-

strated that out of almost 7000 genes, HOXA9 was the

single most highly overexpressed gene in patients with

treatment failure and the strongest predictor of poor

prognosis [40]. A study comprising 258 patients has

shown that patients with higher HOXA9 expression

levels had a reduced complete remission rate and low

survivals in AML [41]. A similar study with AML

patient samples reported that HOXA9 levels were sig-

nificantly inversely correlated with survival [42]. In

addition, the complete remission rate in AML patients

with higher HOXA9 mRNA levels is substantially

reduced compared with those AML patients with

lower HOXA9 expression following the chemotherapy

[43]. These independent studies underscore that

HOXA9 is one of the most predictive factors for poor

prognosis outcomes in AML.

Role of HOXA9 in leukemia

HOXA9 dysregulation is both sufficient and necessary

for leukemic transformation [28]. Forced expression of

H3K4me3

H3K79me2

H3K27me3

H2AK119ub

MLL*

DOT1L

PRC2*

PRC1*

5mC
DNMT3A*

Progenitor cells Committed cellsNormal hematopoiesis

1 2 3 4 5 6 7 9 10 11 13 1 2 3 4 5 6 7 9 10 11 13

HOXA expression low med high *, mutations found in leukemia

Fig. 1. Schematic diagram of epigenetic landscape and chromatin regulators of HOXA9 during normal hematopoiesis. HOX genes are

expressed with lineage and differentiation stage-specific patterns. HOXA5-10, including HOXA9 genes, are highly expressed in uncommitted

hematopoietic stem and progenitor cells (HSPCs) and are epigenetically repressed during differentiation and maturation. HOXA5-10

expression in progenitor cells is associated with MLL complex-mediated methylation of histone H3 at lysine 5, and DOT1L

methyltransferase-mediated methylation of histone H3 at lysine 79. During differentiation, PRC1 and PRC2 polycomb group proteins repress

HOXA5-10 expression through catalyzing H2AK119 ubiquitination and H3K27 trimethylation, respectively. De novo methyltransferase

DNMT3A further induces DNA hypermethylation at HOXA5-10 to ensure transcription silencing in more committed cells. Mutations of

genes involved in this orchestrated epigenetic regulation are usually found in leukemias.
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HOXA9 enforces aberrant self-renewal, impairs mye-

loid differentiation of murine bone marrow progeni-

tors, and ultimately leads to the late onset of leukemia

transformation, which can be accelerated by coexpres-

sion of the partner MEIS1 [44,45]. Conversely, knock-

ing down of HOXA9 in MLL-r AML cells results in

leukemic cell differentiation, apoptosis, and reduced

disease progression [46].

The mechanistic understanding of HOXA9-mediated

leukemogenesis has been improved by high-throughput

chromatin immunoprecipitation sequencing (ChIP-seq)

technologies. HOXA9 protein is predominantly located

at gene enhancers and transcriptionally activates a list

of proto-oncogenes involved in leukemia development,

such as Erg, Flt3, and Myb [47,48]. Moreover, HOXA9

is reported as a pioneer transcription factor that cre-

ates leukemia-specific enhancers by recruiting the

MLL3/MLL4 complex, which is essential for control-

ling gene expression and leukemia development [49].

Given the frequent overexpression and critical role

of HOXA9 in leukemia, HOXA9 becomes an attractive

molecular target. However, due to a lack of druggable

domains, HOXA9 is not quite ideal for therapeutic

interventions. Therefore, uncovering the molecular

mechanisms governing HOXA9 expression holds a

grand promise for developing practical approaches

that inhibit HOXA9 expression or activity in HOXA9-

driven leukemia. This review will summarize the

Table 1. Leukemia-associated genetic alterations linked to HOXA9 overexpression.

Alterations Cancer type Percentage Subtype References

MLL Fusion Leukemia 33 Therapy-related leukemia [144]

10 De novo Leukemia [144]

AML 10 Therapy-related AML [145]

3 De novo AML [145]

NPM1 AML 35 All of AML [18]

45–55 Normal karyotype AML [18,146]

8–10 Pediatric AML [18,147]

DNMT3A AML 22 All of AML [148,149]

87 Adult AML [150]

27 Cytogenetically normal AML [150]

EZH2 AML 2–13 All of AML [151]

ASXL1 mutation AML 6.50 De novo AML [152]

30 Secondary AML [152]

BCOR/BCORL1 AML 4.5–7.4 Adult AML [153,154]

NUP98 fusion AML 3.80 Pediatric AML [155]

35 AML with 11p15 abnormality [156]

ALL t(12;21)
AML t(8;21)

ALL hyperdiploid
AML t(15;17)

CLL
c−/Pre−B−ALL t(9;22)

c−/Pre−B−ALL no t(9;22)
ALL t(1;19)

B−ALL with t(8;14)
AML inv(16)

Healthy bone marrow
T−ALL

CML
MDS

AML complex
AML normal karyotype

Pro−B−ALL t(11q23)/MLL
AML MLL

Expression levels (log
2
)

2 4 6 8 12

HOXA9 HighHOXA9 Low

Fig. 2. HOXA9 expression in the MILE

leukemia study cohort (Bloodspot). Box plot

showing relative expression of HOXA9 in

leukemia subtypes. Overexpression of

HOXA9 is defined as a more than a twofold

increase in HOXA9 expression when

compared to the median HOXA9 expression

in healthy bone marrow (vertical dashed

line). Box, interquartile range, 25–75

percentiles.
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transcriptional and post-transcriptional regulators of

HOXA9 (Table 2) in leukemia and describe the recent

development of small-molecule inhibitors (Table 3) that

target HOXA9’s regulators for antileukemia therapies.

Transcriptional regulation of HOXA9

Transcription factors

CDX2/4

Caudal genes CDX2 and CDX4 are homeobox tran-

scription factors. When first considering the role of

CDX2 in leukemia, it was discovered that the CDX2

gene locus could be translocated to form a fusion with

ETV6; however, this is a rare event that occurs in only

a small subset of AML cases with t(15;17) and t(8:21)

[31]. The fusion protein ETV6-CDX2 leads to an

increased expression of CDX2 protein and subsequent

upregulation of HOXA9 gene expression [50]. Later,

Cdx2 overexpression in a murine model accelerated

leukemic development at a similar latency compared

with EVT6-CDX2 [51]. Although this information

identified that CDX2 alone could promote leukemia

development, the study also found that the ectopic

Cdx2 overexpression group did not upregulate

Table 2. Transcriptional regulators of HOXA9 expression.

Regulators

Regulator role on

HOX expression Translocation states Context References

Transcriptional regulators

CDX2/4 Upregulatory t(8;12); t(12;13)(p13;q12) in MLL-r, t

(15;17) and t(8;21) in AML

AML preclinical mouse models [51,55]

USF2/1 Upregulatory MLL-r: t(4;11), t(9;11) MLL-rearranged leukemia (MLL-

r), human hematopoietic stem

cells

[37,56]

Epigenetic regulators

MLL1-menin-

LEDGF

Upregulatory t(9;11), t(3;5)(q25;q34), t(9;9)(q34;q34),

t(3;21)(q26;q22), t(8;16)(p11;p13), t

(10;11)(p13;q14-21)

MLL-r and NPM1c mutant

leukemia, MLL-AF9 fusion,

Chronic myeloid leukemia

[61,66–69]

DOT1L Upregulatory MLL-r: t(9;11)(p22;q23), t(4;11) MLL-r, MLL fusion, NPM1c

mutants, DNMT3A mutants,

MLL-AF9 fusion

[19,71,111,130,157]

ENL Upregulatory t(11;19)/MLL-ENL MLL fusion, AML cell line

models

[77–79,158]

EZH2 Downregulatory MLL-r: t(9;11) MLL-AF9 fusion, AML mouse

models

[94,159]

DNMT3A Upregulatory Rare fusion transcripts like AML1/

ETO, PML/RARA, MLL/AF9 and CBF/

bMYH11

Almost always associated with

translocations t(15;17), inv(16) and t

(8;21) in a mutually exclusive manner

AML patient samples [35,160,161]

BCOR/BCORL1 Downregulatory Myeloid murine cells, ML patient

samples, Mouse models with

hematologic malignancies

[33,102]

Others

Long non coding

RNAs (lncRNAs)

Both

Downregulatory

[117],

Upregulatory

[118]

Tumor suppressor role in AML with t

(8;21)

AML cell lines [111,112,162]

CTFC chromatin

organization

Both MLL-r AML: t(9;11), t(11;19), RUNX1-

RUNX1T1: t(8;21)

AML cell lines [113,115–117]

microRNA Downregulatory Bcr-Abl fusion: t(9;22)(q34;q11), MLL-

r: t(9;11), CA-AML: t(8;21)

AML cell lines [118–121]

Post-translational

modifications

Both AML cell lines [122–127]
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HOXA9 gene expression compared with control ani-

mals [51]. A later study from the same group found

that the N-terminal domain of the Cdx2 gene, the

transactivation domain provides the binding sites for

coregulators and transcription factors. The deletion of

the N-terminal domain rendered a truncated CDX2

protein that demonstrated a reduction in HOXA gene

expression compared with control [52]. In addition to

ETV6-CDX2 fusion gene expression, ectopic CDX2

expression was observed in t(12;13)(p13;q12) positive

AML and is a transforming event in the mouse model

of t(12;13) AML (p13;q12) AML [51]. Moreover,

another caudal-related gene, CDX4, has been shown

as an important regulator for maintaining HOXA9

expression during embryonic hematopoiesis in zebra-

fish [53,54] and can regulate both HOXA9 and

HOXA10 expression [55].

USF2/1

Two transcriptional factors, upstream stimulation factor-

1 (USF-1) and upstream stimulation factor-2 (USF-2),

have been linked to HOXB gene expression during nor-

mal hematopoiesis [56,57]. Recently, by utilizing an unbi-

ased CRISPR screen targeting 1,639 human transcription

factors in a HOXA9-mCherry reporter MLL-r leukemia

cell line, we have identified USF2 as a novel positive reg-

ulator of HOXA9. USF2 directly binds to a conserved

motif at HOXA9 promoter, and USF2 depletion downre-

gulates HOXA9 expression in MLL-r leukemia cells and

impairs cell growth, which can be rescued by ectopic

expression ofHOXA9 [37].

Epigenetic modulators

MLL-menin-LEDGF complex

The mixed-lineage leukemia gene MLL (MLL1,

KMT2A) encodes a histone methyltransferase that

contains a C terminus SET domain for catalyzing the

methylation of lysine 4 of histone 3 (H3K4) [58,59].

Leukemia-associated MLL gene rearrangements, which

affect only one allele of the endogenous MLL gene,

would produce a fusion oncoprotein that directly binds

and constitutively activates HOXA9 and the HOX

cofactor MEIS1 [45,60]. The MLL gene fusion results

in a loss of the C terminus SET methyltransferase

domain. Still, it retains the N-terminal domain

involved in interaction with chromatin cofactors such

as menin [61]. Wild-type MLL is required to maintain

HOX gene expression during normal hematopoiesis

[62]. In MLL-r AML, the remaining wild-type MLL

allele was initially shown to be essential for HOX gene

expression and leukemogenesis [63]; however, a more

recent study reported that MLL2, but not MLL, is

required for the cell growth of MLL-r leukemia [64].

In non-MLL-r leukemia subtypes such as NPM1c

AML, the wild-type MLL remains critical for leuke-

mia development [65].

Menin is a chromatin-associated nuclear protein

essential for the transcriptional regulation of MLL tar-

get genes and maintenance of HOX gene expression by

MLL fusion proteins [66]. A 5-amino acid RWRFP

sequence near the N terminus of MLL is essential for

interaction with menin [66]. The resulting menin-MLL

interaction plays a critical role in the pathogenesis of

Table 3. Pharmaceutical inhibitors that target HOXA9 upregulation.

Targets Regulatory role

Representative

compounds Effect in HOXA9

Clinical

development References

DOT1L H3K79 methyltransferase EPZ004777 Statistic significant downregulation in MLL-r

AML

Preclinical [132]

EPZ-5676 Phase I/II [132]

SGC0946 Preclinical [134]

MENIN Chromatin associated

protein

VTP50469 Statistic significant downregulation in MLL-r

or NPM1c AML

Preclinical [65]

MI-3545 Preclinical [136]

KO-539 Phase I [137]

SNDX-5613 Phase I/II [138]

MI-2-2 Preclinical [163]

MI-463 Preclinical [164,165]

MI-503 Preclinical [165]

ENL Histone acetylation reader SR-1114 Statistic significant downregulation in MLL-r

AML

Preclinical [140]

SR-0813 Preclinical [140]

XPO1 Nuclear-cytoplasmic

transport protein

KPT-8602 Some downregulation in AML Preclinical [141]

KPT-330 Phase I/II [142]

KPT-185 Preclinical [89]

KPT-276 Preclinical [89]

HBO1 Histone acetyltransferase WM-3835 Significant downregulation in AML Preclinical [80,81]
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MLL leukemia [61,66]. Menin might act as an adapter

protein because it lacks known protein motifs but

interacts with MLL complex components such as

LEDGF [67]. Moreover, it has been reported that

menin, along with Cdx4, co-activated the HOXA genes

by binding to the same regulatory region at the

HOXA9 locus [68]. In addition, inactivation of menin

leads to differentiation arrest and reduced oncogenic

potential of MLL fusion [66]. Menin can interact with

wild-type MLL and MLL fusion proteins to facilitate

MLL-mediated gene expression regulation [69].

LEDGF/PSIP1, a transcriptional coactivator recruited

to the MLL complex by menin, is also critical for

MLL-r AML [70]. Blocking the interaction between

LEDGF and MLL/menin can downregulate MLL’s

target HOXA9 by impairing cell cycle progression and

growth of MLL fusion-transformed human and mouse

HSCs [70] (Fig. 3A).

DOT1L and super elongation complex (SEC)

The disruptor of telomere silencing 1-like (DOT1L) is

a histone-lysine methyltransferase that methylates

lysine 79 residues of histone H3 [71]. DOT1L is associ-

ated with several members of the super elongation

complex (SEC), which consists of RNA polymerase II

elongation activators or coactivators, including P-

TEFb, ELL1/2/3, AFF1/4, ENL, AF9, and EAF1/2

[72]. Because the fusion partners of MLL are often

components of the SEC, the MLL fusion protein can

recruit DOT1L to its target genes for aberrant H3K79

methylation modification [19,71] (Fig. 3A). This

H3K79 methylation then facilitates constitutive activa-

tion of HOX genes and other oncogenes [19]. In addi-

tion, the aberrant methyltransferase activity of

DOT1L is required for the leukemogenesis of several

non-MLL-r leukemias, including leukemias with

NPM1 mutation [67] and DNMT3A mutation [73,74].

ENL

ENL belongs to the chromatin histone acetylation

reader protein family with a distinct amino-terminal

named YEATS domain and a disordered carboxy-

terminal protein–protein interaction interface [75].

Recently, the ENL YEATS domain has been impli-

cated in interaction with acetylated histone H3 [76].

Studies have shown that ENL is crucial for HOXA9/

10, MEIS1, and MYC gene expression and aids in

blocking cell differentiation in MLL-rearranged leuke-

mia [77]. Similarly, Wan et al. [78] have also shown

that ENL is required for AML maintenance. Wan’s

finding is accomplished through the binding of ENL

to the acetylated histone H3 and colocalization with

H3K27ac and H3K9ac on the promoters of genes

essential for leukemia and inducing active transcription

[78]. Generally, in MLL-rearranged leukemia, MLL

fusion proteins interact with the super elongation com-

plex (SEC) or the DOT1L containing complex (DOT-

Com) and modulate gene expression in both cases.

The protein ENL can associate with both of these

complexes and, interestingly, can interact with both

the fused (MLL fusion/SEC/DOTCom) and nonfused

complexes (wild-type MLL) to drive leukemia [79].

Taken together, ENL serving as a histone acetylation

reader regulates oncogenic transcriptional programs in

acute myeloid leukemia.

HBO1

HBO1 histone acetyltransferase (HAT), also known as

KAT7, is a member of the MYST HAT family and

is responsible for histone H3 lysine 14 acetylation

[80,81]. HBO1 maintains leukemia stem cells by main-

taining higher expression of HOXA9 and HOXA10

through H3K14 acetylation followed by RNA pol II

activation in leukemia [80] and is a potential therapeu-

tic target in AML [81]. Recently, it has also been iden-

tified that HBO1-MLL interaction is a crucial step in

promoting AF4/ENL/P-TEFb-mediated leukemogene-

sis [80,82].

NPM1c-XPO1

Nucleophosmin (NPM1) is a ubiquitously abundant

nucleolar protein that maintains genome integrity,

DNA repair, and ribosome biogenesis [83]. Under the

normal physiologic condition, NPM1 protein is local-

ized in nucleoli. However, the AML-related NPM1

mutations at its C terminus (i.e., NPM1c) lead to

abnormal cytoplasmic dislocation of the protein [84].

NPM1c AML is associated with aberrant activation of

HOXA and HOXB cluster genes, including HOXA9

[85,86]. The relocalization of NPM1c from the cyto-

plasm to the nucleus or targeted NPM1c degradation

results in disruption of the oncogenic program through

downregulation of HOX genes followed by induction

of myeloid cell differentiation [87]. Xportin 1 (XPO1),

also known as chromosomal region maintenance 1

(CRM1), a major nuclear-cytoplasmic transport pro-

tein, interacts with NPM1c and transports NPM1c to

the cytoplasm [88,89]. Genetic or pharmaceutical inhi-

bition of XPO1 blocks NPM1c transport and subse-

quently results in AML growth arrest and

differentiation [90] (Fig. 3B, Model I). Intriguingly, a

much recent study identified a second possible
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mechanism by which NPM1c aberrantly regulates

HOX gene expression. This study is accomplished by

the nuclear relocalization of NPM1c in an XPO1-

dependent manner and their direct binding to HOX

cluster regions to activate HOX genes [91] (Fig. 3B,

Model II). Because the wild-type MLL is required for

NPM1 mutant AML, NPM1c AML also depends on

MLL-menin interaction. Small-molecule inhibition of

H3K79me2

MLL-N
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DOT1L

Men
inLEDGF

(AF9, etc)
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CXXC
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Fig. 3. HOXA9 regulation and pharmacological inhibition of HOXA9. (A) In MLL-r AML, HOXA9 is maintained by the multiple epigenetic

modulators, such as the MLL-menin complex, DOT1L super elongation complex, HBO1 complex, and AF9 protein. Several small-molecule

inhibitors have been developed to target these epigenetic proteins, including menin inhibitors (MI-2-2, MI-463, MI-503, VTP50469), which block

menin-MLL interaction; DOT1L inhibitors (SGC0946, EPZ-5676, EPZ004777), which inhibit DOT1L methyltransferase activity; HBO1 inhibitor

(WM-3835), which binds directly to the acetyl-CoA binding site of HBO1 to inhibit its acetyltransferase activity; and inhibitors of ENL (SR-1114

and SR-0813), which disrupts ENL’s interaction with histone acetylation. (B) In NPM1 mutant AML, the HBO1, MLL-menin, and DOT1L

complexes are also implicated in HOXA9 regulation. In addition, several hypotheses have been proposed for the mechanism of NPM1c-

HOXA9 gene regulation. For example, the AML-associated NPM1c mutant is exported to the cytoplasm by nuclear protein export receptor

XPO1. Pharmacological suppression of XPO1 in NPM1c AML relocalizes NPM1c to the nucleus and inhibits HOXA9 gene expression (Model I).

Recently, NPM1c has also been suggested to bind to chromatin with XPO1 at HOXA genes including HOXA9 (Model II).
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MLL-menin interaction reduces HOX gene expression

and promotes leukemic cell differentiation [65,92].

EZH2

The enhancer-of-zeste homolog 2 (EZH2) belongs to

polycomb group complex 2 (PRC2) that typically func-

tions as a histone methyltransferase to add a tri- or di-

methylation mark on lysine 27 of histone 3

(H3K27me3/2), causing transcriptional repression of

the marked gene [93]. While gain-of-function muta-

tions of EZH2 are found in lymphoid malignancies

[94], loss-of-function mutations of EZH2 have been

found in myeloid malignancies such as MDS, MPN,

and AML [32,95–97]. Reduced EZH2 expression is sig-

nificantly associated with poor prognosis and chemo-

resistance in AML [98]. Interestingly, overexpression

of HOXA9 is found in myeloid malignancies with

decreased EZH2 expression [98,99]. Knockdown of

EZH2 in AML cells results in elevated HOXA9 levels

[98], supporting a negative regulatory role of EZH2 on

HOXA9 expression in MLL-r AML. The studies on

the mouse models also confirmed that Hoxa9 was

depressed by EZH2 loss at the myelodysplastic syn-

drome stage [100].

BCOR

BCL6 corepressor (BCOR), a crucial component of a

polycomb repressive complex 1 (PRC1) variant, has an

essential role in regulating cell fate transition and mye-

loid differentiation during normal hematopoiesis

[33,101]. In one study, researchers have identified that

BCOR acts as a repressor of HOXA cluster gene mem-

bers (HoxA5, HoxA7, and HoxA9) to promote leuke-

mia [33]. A recent study supports this notion showing

that BCOR inactivation in hematopoietic stem cells

(HSCs) results in aggressive acute leukemia [102].

Through gene expression analysis and chromatin

immunoprecipitation sequencing, they have revealed

differential regulation of HOXA7 and HOXA9 upon

BCOR inactivation [102]. It has also been suggested

that BCOR homolog (BCORL1) mutations have been

characterized in many AML subtypes, and the muta-

tion spectrum of BCORL1 is very similar to BCOR

mutations [103]. Whether BCORL1 plays a similar role

in repressing HOXA9 expression remains to be

investigated.

ASXL1

Additional sex comb-like 1 (ASXL1), which encodes a

regulator of gene expression, is frequently mutated in

myeloid malignancies, including ˜ 10–20% of AML

[104,105]. ASXL1 is involved in the regulation of

H2AK119ub by interacting with chromatin de-

ubiquitinase BAP1 [106]. Loss of ASXL1 results in loss

of H3K27me3 and increased expression of HOXA9 in

leukemia cells [34]. Mechanistically, ASXL1 forms a

complex with PRC2 members EZH2, SUZ12, and

EED and is required for PRC2 recruitment at the

HOXA locus for gene repression [34]. Other studies

suggest that ASXL1 mutations may lead to a hyperac-

tive ASXL1-BAP1 complex that removes H2AK119

mono-ubiquitylation and induces HOXA9 upregula-

tion [107].

DNMT3A

DNMT3A, a de novo DNA methyltransferase, establishes

DNA methylation at CpG sites during development and

disease [108]. Frequent alterations of DNMT3A have

been recently noticed in a wide variety of hematologic

malignancies, which seems to confer negative predictive

values in AML patients [35]. DNA hypomethylation at

HOXA genes is observed in AML patient samples with

DNMT3A mutations and mouse models with DNMT3A

knockout or hot spot mutations [23,74,86]. Several studies

have shown that DNMT3A mutants in hematopoietic

progenitor cells facilitate HOXA9 gene upregulation in

mouse models [74,109,110].

Long noncoding RNAs

HOX gene expression has also been shown to be regu-

lated by long noncoding RNAs (lncRNAs). Though

direct regulation of HOXA9 by lncRNA has not yet

been established, researchers have demonstrated both

the repressive and expressive regulatory mechanisms

underlying lncRNA regulation of other HOX gene

members. A seminal study by Rinn et al. identified a

trans-regulatory system termed HOTAIR. This non-

coding RNA is expressed initially from the HOXC

locus and regulates HOX gene expression in the

HOXD cluster. They reported that HOTAIR could

recruit PRC2 member SUZ12 and increase H3K27 tri-

methylation to repress HOXD gene clusters (but not

HOXC and HOXB gene members) [111]. In contrast,

Wang and colleagues have reported that HOTTIP

functions through a cis-regulatory manner, in which

this long noncoding RNA is transcribed from the

HOXA cluster and binds and activates HOXA genes.

HOTTIP appears to accomplish this through chromo-

somal looping, bringing HOTTIP near the target

genes, and increasing H3K4 trimethylation to activate

gene transcription [112].
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CTCF and three-dimensional chromatin organization

Recently, a few studies focused on the molecular

mechanisms underlying the role of three-dimensional

chromatin architecture associated and aberrant

HOXA9 expression by tackling CTCF-binding sites

[113–115]. While global CTCF deletion in the genome

by CRISPR knockout or shRNA induced a significant

survival crisis and led to biased phenotypes [116],

CRISPR-mediated genomic editing of minimal CTCF-

binding consensus sequences holds the promise to

reveal CTCF’s function in regulating HOXA expres-

sion. Deletion of CTCF-binding sites (CBS) within

Hox clusters disrupted topological boundaries and

caused the spreading of active transcription into previ-

ously repressed domains in mouse embryonic stem

(ES) cells [117]. In MLL-rearranged AML cell line

MOLM-13, disruption of a CTCF boundary between

HOXA7 and HOXA9 genes perturbs chromatin struc-

ture was reported to reduce HOXA gene transcription

and represses AML engraftment in mouse models

[115]. The role of CTCF in regulating gene expression

can be highly context-dependent and cell-type-

dependent. In another independent study, targeted

deletions of CBS in the NPM1 mutant OCI-AML3

AML cell line eliminated CTCF binding occupancy

but had minimal influence on HOXA expression [113].

Therefore, the precise regulation of HOXA9 by

CTCF-dependent chromosomal architectures warrants

further investigations in genetically defined leukemia

models.

Post-transcriptional regulation of
HOXA9

In addition to regulating HOXA9 at transcriptional

levels, many post-transcriptional cascades, including

mRNA processing and post-transcriptional modifica-

tions, regulate HOXA9 protein levels and function

(Table 2). Although relatively less studied than tran-

scriptional regulation, these processes represent addi-

tional layers of control of HOXA9 and could provide

new therapeutic opportunities for targeting HOXA9.

Regulation by microRNAs

MicroRNAs (miRNA) are small, noncoding RNAs

that play essential roles in post-transcriptional gene

regulation [118]. Several miRNAs, such as miR-126

[119], miR-196b [120], and miR-181 [121], have been

identified as regulators of HOXA9 expression. miR-

126 is the first experimental validated microRNA regu-

lator of HOXA9 [119]. miR-126 binds to HOXA9

homeobox and inhibits HOXA9 protein levels in

MLL-ENL cells [119]. miR-196b is a miRNA located

adjacent to HOXA9 at the HOXA9 cluster and is co-

expressed with HOXA9 in human AMLs [120]. Inter-

estingly, miR-196b directly targets HOXA9 and its

partner, MEIS1, for gene repression, suggesting a neg-

ative feedback loop of HOXA9 regulation in AML

[120]. miR-181a and miR-181b are associated with

favorable outcomes in cytogenetically abnormal AML

[121]. Ectopic expression of miR-181b leads to

decreased PBX3 and HOXA cluster gene expression

levels and delayed leukemogenesis [121].

Regulation by post-translational modifications

In various biological contexts, post-translational modi-

fications such as ubiquitination [122], methylation

[123,124], and phosphorylation [125] have been identi-

fied as regulators of HOXA9 protein. Zhang and col-

leagues have identified that CUL4A, a member of the

cullin protein family of ubiquitin-protein ligases, pro-

motes HOXA9 ubiquitination and subsequent

proteasome-dependent degradation in myeloid progeni-

tor cells [122]. During cardiomyocyte hypertrophy or

inflammation in endothelial cells, protein arginine

methyltransferase 5 (PRMT5) binds to HOXA9 and

induces arginine methylation on HOXA9 to modulate

HOXA9 expression or activity [123,124]. A consensus

sequence in the N-terminal region of the HOXA9

homeodomain has been found to be phosphorylated

by protein kinase C (PKC) and casein kinase II, which

alters the affinity of HOXA9 for DNA binding [126].

Moreover, additional and distinctive phosphorylation

sites of HOXA9 have been suspected in various con-

texts [127].

Pharmacological targeting HOXA9 expression by

small-molecule inhibitors

DOT1L inhibitors

DOT1L inhibitors (Table 3) have shown to have some

promising efficacy for MLL-rearranged leukemia

and are currently under investigation in clinical trials to

investigate the therapeutic benefits of targeting DOT1L.

In an induced homozygous deletion of the Dot1L

mouse model, the mice’s death was due to severe ane-

mia, hypocellularity in the bone marrow, and depletion

of hematopoietic stem cells [128]. Another study, using

a hematopoietic cell knockout model, confirmed that

not all developed cells via hematopoiesis are dependent

on DOT1L. [129]. Following knockout/down

studies, Dot1l contributes to MLL-AF9-mediated
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leukemogenesis by upregulation of oncogene Hoxa9

and Meis1. Investigators are creating compounds to tar-

get and inhibit DOT1L for AML treatment. These

compounds can inhibit DOT1L enzymatic activity by

competing with the cofactor S-adenosyl methionine

(SAM) [130]. There are three compounds under investi-

gation: EPZ004777, EPZ-5676, and SGC0946. In a pre-

clinical study, the researchers discovered that treating

MLL-leukemic cells with EPZ004777 inhibits H3K79

methylation and, as a result, reduces the expression of

downstream targets HOXA9 and MEIS1 by around

80% in MLL-AF9 transformed cells but not in normal

myeloid progenitors [131]. Additionally, the DOT1L

inhibitor reduced the proliferation of MLL-leukemic

cells and induced apoptosis [131]. A few years later, the

same group demonstrated similar results with the treat-

ment of EPZ-5676 [132]. Similarly, SGC0946 was syn-

thesized to be a more potent DOT1L inhibitor than

EPZ004777. [133]. In leukemia patients, a phase I clini-

cal trial of EPZ-5675, also known as pinometostat,

found that patients responded well to various therapeu-

tic dosages. Only two of the 51 participants experienced

complete remission at the end of the trial; however, one

of those participants experienced an aggressive relapse

following the study’s conclusion. This suggests that con-

tinued DOT1L targeting treatment is required [134].

Although high EPZ-5676 blood concentrations mirrored

anti-tumor effects in preclinical studies, there was no

significant evidence that the treatment effectively sup-

pressed cancer. Based on this, the authors hypothesized

that DOT1L should be considered in combination with

other therapies in leukemia patients [134]. A phase Ib/II

clinical investigation is now ongoing in MLL leukemia

patients to assess the safety and efficacy of pinometo-

stat with chemotherapy.

MENIN inhibitors

Menin is another therapeutic target being studied in

MLL-rearrangement leukemias. Direct examination of

patient models with HOXA gene overexpression

reveals that AML subtypes including mutations

KMT2Ar (11q23 rearrangements), NpM1-MLF1 (t(3;5)

(q25;q34)), NUP98r (11p15 rearrangements), SET-

NUP214 (t(9;9)(q34;q34)), RUNX1-EV11 (t(3;21)(q26;

q22)), MYST3-CREBBP (t(8;16)(p11;p13)), CALM-

AF10 (t(10;11)(p13;q14-21)), EZH2, and ASXL1 have

better response with menin inhibitors [135]. In a pre-

clinical study, the compound VTP50469 was found to

inhibit the binding of menin with target proteins to

form leukemogenic protein complexes. The treatment

of leukemic cells with this compound inhibited prolif-

eration, induced differentiation, and promoted

apoptosis. Additionally, in patient-derived xenograft

models, treatment with VTP50469 was able to eradi-

cate leukemia. Menin-MLL interaction is also required

in NPM1 mutant leukemia cells to maintain the aber-

rant expression of HOXA genes [65]. Another preclini-

cal study found that using the menin inhibitor MI-

3545 can induce remission in MLL-rearranged or

NPM1 mutant leukemias [136]. Due to the positive

effects of targeting menin in preclinical studies, several

phases I clinical trials are currently underway to mea-

sure the safety and efficacy of menin inhibitors in

AML patients. KO-539, an oral menin inhibitor, is

being evaluated in the ongoing first-in-human

KOMET-001 trial in patients with relapsed or refrac-

tory AML. A preliminary report indicates that KO-

539 is well tolerated in participants and demonstrates

efficacy in treating leukemia depending on the muta-

tions [137]. Additionally, another menin inhibitor

SNDX-5613 is under investigation in a phase I/II clini-

cal trial to investigate the safety and efficacy in MLL-

rearranged and NPM1-mutated leukemias [138].

ENL inhibitors

An ENL YEATS domain selective inhibitor XL-13m

has been reported to induce downregulation of MLL-r

regulated oncogenes such as HOXA9 by repressing

ENL recruitment on chromatin [139]. A recent study

by Wortzel et al. [140] has developed an ENL

degrader, SR-1114, and an ENL YEATS domain

inhibitor, SR-0813, antileukemia therapies. SR-1114

and SR-0813 selectively inhibit the growth of ENL-

dependent leukemia cell lines and downregulate ENL

target genes such as HOXA9/10 [140].

XPO1 inhibitors

Exportin 1 (XPO1) belongs to nuclear-cytoplasmic

transport protein families and has recently emerged as

a therapeutic target in leukemia [141,142]. A second-

generation XPO1 inhibitor, KPT-8602, also called

Eltanexor, has been reported to have potent activity

against ALL in preclinical models [141]. KPT-330 (seli-

nexor), another XPO1 inhibitor, is already under

phase I/II clinical trials for CLL and AML [142]. Pre-

clinical studies of KPT-185 and KPT-276, two orally

bioavailable selective inhibitors of XPO1, have also

been reported to confer promising antileukemic effects

both in vitro and in vivo models AML models [89].

Furthermore, XPO1 inhibitor treatment in AML cell

lines and patient samples leads to intranuclear accu-

mulation of NPM1 followed by restoration of normal

cellular homeostasis, suggesting XPO1 as an attractive
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target during AML with some downregulation of

HOXA9 expression and consistent with other studies

[89,143] (Fig. 3B, Model I).

HBO1 inhibitors

Studies have shown that HBO1 maintains higher

HOXA9/10 expression in leukemia through the activation

of RNA pol II [80] and is a potential therapeutic target

in AML [81]. Recently, a cell-permeable small HBO1

inhibitor molecule WM-3835 has been reported to show

an antileukemic effect in human AML cell lines with sig-

nificant downregulation HOXA9 expression [80,81].

Concluding remarks and future
directions

HOXA9 is a promising target for leukemia therapy as it

is highly expressed in leukemia subtypes driven by diverse

genetic mutations. Many HOXA9 regulators, including

transcription factors, epigenetic modulators, lncRNAs,

microRNAs, 3D chromatin organizations, and post-

transcriptional modifications, play critical roles in regu-

lating HOXA9 expression and function. Despite that

HOXA9 itself is a difficult drug target, pharmacological

intervention with small molecules inhibiting HOXA9

expression or function holds great promise for leukemia

therapy. As the regulation of HOXA9 is complex, thera-

peutic response to these small-molecule inhibitors may be

highly context and subtype-dependent. It is also crucial

to dissect the crosstalk of various transcriptional and epi-

genetic HOXA9-regulating pathways that influence drug

response. To systematically discover regulators of

HOXA9, our laboratory has successfully generated

endogenous HOXA9P2A-mCherry reporter MLL-r AML

and ALL cell lines that could monitor HOXA9’s expres-

sion in real time without affecting endogenous transcrip-

tion of other adjacent HOXA genes [37]. We have

performed CRISPR/Cas9 screening in the transcription

factor library with this reporter and identified a novel

positive regulator USF2 of HOXA9 [37]. The advance of

CRISPR/Cas9 genetic screen technologies and such

newly developed HOXA9 reporter cell lines would pro-

vide a robust and unbiased platform for discovering

novel regulators controlling HOXA9 expression and

identifying new alternative strategies to overcome the

resistance to HOXA9-inhibiting agents by combined

genetic or drug screenings.
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